
Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

On Dynamic Load Balancing on Graphics Processors

Daniel Cederman† and Philippas Tsigas‡

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{cederman,tsigas}@cs.chalmers.se

Abstract
To get maximum performance on the many-core graphics processors it is important to have an even balance of the
workload so that all processing units contribute equally to the task at hand. This can be hard to achieve when the
cost of a task is not known beforehand and when new sub-tasks are created dynamically during execution. With the
recent advent of scatter operations and atomic hardware primitives it is now possible to bring some of the more
elaborate dynamic load balancing schemes from the conventional SMP systems domain to the graphics processor
domain.
We have compared four different dynamic load balancing methods to see which one is most suited to the highly par-
allel world of graphics processors. Three of these methods were lock-free and one was lock-based. We evaluated
them on the task of creating an octree partitioning of a set of particles. The experiments showed that synchroniza-
tion can be very expensive and that new methods that take more advantage of the graphics processors features
and capabilities might be required. They also showed that lock-free methods achieves better performance than
blocking and that they can be made to scale with increased numbers of processing units.

Categories and Subject Descriptors (according to ACM CCS): C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)

1. Introduction

Today’s graphics processors have ventured from the multi-
core to the many-core domain and, with many problems in
the graphics area being of the so called embarrassingly par-
allel kind, there is no question that the number of processing
units will continue to increase.

To be able to take advantage of this parallelism in general
purpose computing, it is imperative that the problem to be
solved can be divided into sufficiently fine-grained tasks to
allow the performance to scale when new processors arrive
with more processing units. However, the more fine-grained
a task set gets, the higher the cost of the required synchro-
nization becomes.

Some problems are easily divided into fine-grained tasks

† Supported by Microsoft Research through its European PhD
Scholarship Programme
‡ Partially supported by the Swedish Research Council (VR)

with similar processing time, such as for example the N-
body problem [NHP07]. But with other problems this infor-
mation can be hard to predict and new tasks might be created
dynamically during execution. In these cases dynamic load
balancing schemes are needed which can adapt to shifts in
work load during runtime and redistribute tasks evenly to
the processing units.

Several popular load balancing schemes have been hard
to implement efficiently on graphics processors due to lack
of hardware support, but this has changed with the advent
of scatter operations and atomic hardware primitives such
as Compare-And-Swap. It is now possible to design more
advanced concurrent data structures and bring some of the
more elaborate dynamic load balancing schemes from the
conventional SMP systems domain to the graphics processor
domain.

The load balancing in these schemes is achieved by hav-
ing a shared data object that stores all tasks created before
and under execution. When a processing unit has finished its

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

work it can get a new task from the shared data object. As
long as the tasks are sufficiently fine-grained the work load
will be balanced between processing units.

The methods used for synchronizing the memory accesses
to these shared data objects can be divided into two cat-
egories, blocking and non-blocking. Blocking methods use
mutual exclusion primitives such as locks to only allow one
processing unit at a time to access the object. This is a pes-
simistic conflict control that assumes conflicts even when
there are none.

Non-blocking methods on the other hand employ an opti-
mistic conflict control approach allowing several processing
units to access the shared data object at the same time and
suffering delays because of retries only when there is an ac-
tual conflict. This feature allows non-blocking algorithms to
scale much better when the number of processing units in-
creases. Section 3 discusses more about the differences be-
tween the two methods.

In the paper we compare four different methods of dy-
namic load balancing:

Centralized Blocking Task Queue Tasks are stored in a
queue using mutual exclusion.

Centralized Non-blocking Task Queue Tasks are stored
in a non-blocking (lock-free) queue.

Centralized Static Task List Tasks are stored in a static
list.

Task Stealing Each processing unit has a local double
ended queue where it stores new tasks. Tasks can be stolen
from other processing units if required.

The first method is lock-based while the other three are
non-blocking ones. The schemes are evaluated on the task of
creating an octree partitioning of a set of particles. An octree
is a tree-based spatial data structure that repeatedly divides
the space by half in each direction to form eight octants. The
fact that there is no information beforehand on how deep
each branch in the tree will be, makes this a suitable problem
for dynamic load balancing.

1.1. Related Work

Load balancing is a very basic problem and as such there
has been a lot of work done in the area. In this subsection we
present a small set of papers that we deem most relevant to
our work.

Korch et al. have made a comparison between differ-
ent dynamic balancing schemes on the radiosity problem
[KR03]. Heirich and Arvo have compared static and dy-
namic load balancing methods for ray-tracing and found
static methods to be inadequate [HA98]. Foley and Suger-
man have implemented an efficient kd-tree traversal algo-
rithm for graphics processors and point out that load bal-
ancing is one of the central issues for any highly parallel
ray-tracer [FS05].

When it comes to using task stealing for load balancing,
Blumofe and Leiserson gave “the first provably good task
stealing scheduler for multithreaded computations with de-
pendencies“ [BL94]. Arora et al. have presented an efficient
lock-free method for task stealing where no synchroniza-
tion is required for local access when the local stack has
more than one elements [ABP98]. Soares et al have used
task stealing as load balancing for voxel carving with good
performance [SMRR07].

In the following section the system model is presented. In
Section 3 the need for non-blocking algorithms is discussed.
Section 4 has an overview of the load balancing methods
compared in the paper and Section 5 describes the octree par-
titioning task used for evaluation. In section 6 we describe
the test settings and discuss the result.

2. The System Model

In this work all the load balancing methods have been
implemented using CUDA, a compiler and run-time from
NVIDIA that can compile normal C code into binary or byte-
code that can be executed on CUDA-enabled graphics pro-
cessors.

General Architecture The graphics processors consist of
up to 16 multiprocessors each, which can perform SIMD
(Single Instruction, Multiple Data) instructions on 8 mem-
ory positions at a time. Each multiprocessor has 16 kB of a
very fast local memory that allows information to be com-
municated between threads running on the same multipro-
cessor.

Memory Access Each multiprocessor has access to the
large, but relatively slow, global memory. It is possible to
speed up access to the memory by arranging memory ac-
cesses in such a way so that the graphics processor can coa-
lesce them into one big read or write operation. This is done
by letting threads access consecutive memory locations with
the first location being a multiple of 16 times the word size
read or written.

The NVIDIA 8600GTS and newer graphics processors
support atomic operations such as CAS (Compare-And-
Swap) and FAA (Fetch-And-Add) when accessing the mem-
ory, which can be used to implement efficient parallel data
structures.

Scheduling The graphics processor uses a massive num-
ber of threads to hide memory latency instead of using a
cache memory. These threads are divided into thread blocks
of equal size where all threads in a specific thread block is
assigned to a specific multiprocessor. This allows threads in
the same thread block to communicate with each other using
the fast local memory and a special hardware barrier func-
tion which can be used to synchronize all threads in a block.

Thread blocks are run from start to finish on the same
multiprocessor and can’t be swapped out for another thread

c© The Eurographics Association 2008.

58

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

block. If all thread blocks started can’t fit on the available
multiprocessors they will be run sequentially and will be
swapped in as other thread blocks complete. A common sce-
nario is to divide work into small tasks and then create a
thread block for each task. When a multiprocessor has fin-
ished with one thread block/task, it schedules a new one and
can thus achieve a relatively balanced load.

The threads in a thread block are scheduled according to
which warp they are a part of. A warp consists of 32 threads
with consecutive id, such as 0..31 and 32..63. The graphics
processor tries to execute the threads in a warp using SIMD
instructions, so to achieve optimal performance it is impor-
tant to try to have all threads in a warp perform the same
instruction at any given time. Threads in the same warp that
perform different operations will be serialized and the mul-
tiprocessor will not be used to its full capabilities.

3. Synchronization

Synchronization schemes for designing shared data objects
can be divided into three categories:

Blocking Uses mutual exclusion to only allow one process
at a time to access the object.

Lock-Free Multiple processes can access the object concur-
rently. At least one operation in a set of concurrent opera-
tions finishes in a finite number of its own steps.

Wait-Free Multiple processes can access the object concur-
rently. Every operation finishes in a finite number of its
own steps.

The term non-blocking is also used in order to describe
methods that are either lock-free or wait-free.

The standard way of implementing shared data objects is
often by the use of basic synchronization constructs such
as locks and semaphores. Such blocking shared data objects
that rely on mutual exclusion are often easier to design than
their non-blocking counterpart, but a lot of time is spent in
the actual synchronization, due to busy waiting and convoy-
ing. Busy waiting occurs when multiple processes repeat-
edly checks if, for example, a lock has been released or not,
wasting bandwidth in the process. This lock contention can
be very expensive.

The convoying problem occurs when a process (or warp)
is preempted and is unable to release the lock quick enough.
This causes other processes to have to wait longer than nec-
essary, potentially slowing the whole program down.

Non-blocking shared data objects, on the other hand, al-
lows access from several processes at the same time with-
out using mutual exclusion. So since a process can’t block
another process they avoid convoys and lock contention.
Such objects also offer higher fault-tolerance since one pro-
cess can always continue, whereas in a blocking scenario, if
the process holding the lock would crash, the data structure

would be locked permanently for all other processes. A non-
blocking solution also eliminates the risk of deadlocks, cases
where two or more processes circularly waits for locks held
by the other.

4. Load Balancing Methods

This section gives an overview of the different load balanc-
ing methods we have compared in this paper.

4.1. Static Task List

The default method for load balancing used in CUDA is to
divide the data that is to be processed into a list of blocks
or tasks. Each processing unit then takes out one task from
the list and executes it. When the list is empty all processing
units stop and control is returned to the CPU.

This is a lock-free method and it is excellent when the
work can be easily divided into chunks of similar processing
time, but it needs to be improved upon when this informa-
tion is not known beforehand. Any new tasks that are created
during execution will have to wait until all the statically as-
signed tasks are done, or be processed by the thread block
that created them, which could lead to an unbalanced work-
load on the multiprocessors.

The method, as implemented in this work, consists of two
steps that are performed iteratively. The only data structures
required are two arrays containing tasks to be processed and
a tail pointer. One of the arrays is called the in-array and only
allows read operations while the other, called the out-array,
only allows write operations.

In the first step of the first iteration the in-array contains
all the initial tasks. For each task in the array a thread block
is started. Each thread block then reads task i, where i is the
thread block ID. Since no writing is allowed to this array,
there is no need for any synchronization when reading.

If any new task is created by a thread block while per-
forming its assigned task, it is added to the out-array. This
is done by incrementing the tail pointer using the atomic
FAA-instruction. FAA returns the value of a variable and
increments it by a specified number atomically. Using this
instruction the tail pointer can be moved safely so that mul-
tiple thread blocks can write to the array concurrently.

The first step is over when all tasks in the in-array has been
executed. In the second step the out-array is checked to see if
it is empty or not. If it is empty the work is completed. If not,
the pointers to the out- and in-array are switched so that they
change roles. Then a new thread block for each of the items
in the new in-array is started and this process is repeated
until the out-array is empty. The algorithm is described in
pseudo-code in Algorithm 1.

The size of the arrays needs to be big enough to accom-
modate the maximum number of tasks that can be created in
a given iteration.

c© The Eurographics Association 2008.

59

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

Algorithm 1 Static Task List Pseudocode.
function DEQUEUE(q, id)

return q.in[id]
function ENQUEUE(q, task)

localtail← atomicAdd(&q.tail,1)
q.out[localtail] = task

function NEWTASKCNT(q)
q.in,q.out,oldtail,q.tail← q.out,q.in,q.tail,0
return oldtail

procedure MAIN(taskinit)
q.in,q.out← newarray(maxsize),newarray(maxsize)
q.tail← 0
enqueue(q, taskinit)
blockcnt← newtaskcnt(q)
while blockcnt 6= 0 do

run blockcnt blocks in parallel
t← dequeue(q,T Bid)
subtasks← doWork(t)
for each nt in subtasks do

enqueue(q,nt)
blocks← newtaskcnt(q)

4.2. Blocking Dynamic Task Queue

In order to be able to add new tasks during runtime we de-
signed a parallel dynamic task queue that thread blocks can
use to announce and acquire new tasks.

As several thread blocks might try to access the queue si-
multaneously it is protected by a lock so that only one thread
block can access the queue at any given time. This is a very
easy and standard way to implement a shared queue, but it
lowers the available parallelism since only one thread block
can access the queue at a time, even if there is no conflict
between them.

The queue is array-based and uses the atomic CAS
(Compare-And-Swap) instruction to set a lock variable to
ensure mutual exclusion. When the work is done the lock
variable is reset so that another thread block might try to
grab it. The algorithm is described in pseudo-code in Algo-
rithm 2.

Since it is array-based the memory required is equal to the
number of tasks that can exist at any given time.

4.3. Lock-free Dynamic Task Queue

A lock-free implementation of a queue was implemented to
avoid the problems that comes with locking and also in order
to study the behavior of lock-free synchronization on graph-
ics processors. A lock-free queue guarantees that, without
using blocking at all, at least one thread block will always
succeed to enqueue or dequeue an item at any given time
even in presence of concurrent operations. Since an opera-

Algorithm 2 Blocking Dynamic Task Queue Pseudocode.
function DEQUEUE(q)

while atomicCAS(&q.lock,0,1) == 1 do
if q.beg! = q.end then

q.beg++
result← q.data[q.beg]

else
result← NIL

q.lock← 0
return result

function ENQUEUE(q, task)
while atomicCAS(&q.lock,0,1) == 1 do
q.end ++
q.data[q.end]← task
q.lock← 0

tion will only have to be repeated at an actual conflict it can
deliver much more parallelism.

The implementation is based upon the simple and efficient
array-based lock-free queue described in a paper by Zhang
and Tsigas [TZ01]. A tail pointer keeps track of the tail of
queue and tasks are then added to the queue using CAS. If
the CAS-operation fails it must be due to a conflict with an-
other thread block, so the operation is repeated on the new
tail until it succeeds. This way at least one thread block is
always assured to successfully enqueue an item.

The queue uses lazy updating of the tail and head point-
ers to lower contention. Instead of changing the head/tail
pointer after every enqueue/dequeue operation, something
that is done with expensive CAS-operations, it is only up-
dated every x:th time. This increases the time it takes to find
the actual head/tail since several queue positions needs to be
checked. But by reading consecutive positions in the array,
the reads will be coalesced by the hardware into one fast read
operation and the extra time can be made lower than the time
it takes to try to update the head/tail pointer x times.

Algorithm 3 gives a skeleton of the algorithm without the
essential optimizations. For a detailed and correct descrip-
tion, please see the original paper [TZ01]. This method re-
quires just as much memory as the blocking queue.

4.4. Task Stealing

Task stealing is a popular load balancing scheme. Each pro-
cessing unit is given a set of tasks and when it has com-
pleted them it tries to steal a task from another processing
unit which has not yet completed its assigned tasks. If a unit
creates a new task it is added to its own local set of tasks.

One of the most used task stealing methods is the lock-
free scheme by Arora et al. [ABP98] with multiple array-
based double ended queues (deques). This method will be

c© The Eurographics Association 2008.

60

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

Algorithm 3 Lock-free Dynamic Task Queue Pseudocode.
function DEQUEUE(q)

oldbeg← q.beg
lbeg← oldbeg
while task = q.data[lbeg] == NIL do

lbeg++
if atomicCAS(&q.data[lbeg], task,NIL)! = task then

restart
if lbeg mod x == 0 then

atomicCAS(&q.beg,oldbeg, lbeg)
return task

function ENQUEUE(q, task)
oldend← q.end
lend← oldend
while q.data[lend]! = NIL do

lend ++
if atomicCAS(&q.data[lend],NIL, task)! = NIL then

restart
if lend mod x == 0 then

atomicCAS(&q.end,oldend, lend)

referred to as ABP task stealing in the remainder of this pa-
per.

In this scheme each thread block is assigned its own
deque. Tasks are then added and removed from the tail of the
deque in a LIFO manner. When the deque is empty the pro-
cess tries to steal from the head of another process’ deque.

Since only the owner of the deque is accessing the tail
of the deque there is no need for expensive synchroniza-
tion when the deque contains more than one element. Sev-
eral thread blocks might however try to steal at the same
time, requiring synchronization, but stealing is assumed to
occur less often than a normal local access. The implemen-
tation is based on the basic non-blocking version by Arora
et al. [ABP98]. The stealing is performed in a global round
robin fashion, so thread block i looks at thread block i + 1
followed by i+2 and so on.

The memory required by this method depends on the
number of thread blocks started. Each thread block needs
its own deque which should be able to hold all tasks that are
created by that block during its lifetime.

5. Octree Partitioning

To evaluate the dynamical load balancing methods described
in the previous section, they are applied to the task of creat-
ing an octree partitioning of a set of particles [SG91]. An oc-
tree is a tree-based spatial data structure that recursively di-
vides the space in each direction, creating eight octants. This
is done until an octant contains less than a specific number
of particles.

The fact that there is no information beforehand on how

Figure 1: Tube Distribution (An example with 200 ele-
ments.)

deep each branch in the tree will be, makes this a suitable
problem for dynamic load balancing.

A task in the implementation consists of an octant and a
list of particles. The thread block that is assigned the task
will divide the octant into eight new octants and count the
number of elements that are contained in each. If the count
is higher than a certain threshold, a new task is created con-
taining the octant and the particles in it. If it is lower than
the threshold, the particle count is added to a global counter.
When the counter reaches the total number of particles the
work is completed.

Particles found to be in the same octant are moved to-
gether to minimize the number of particles that has to be
examined for further division of the octant. This means that
the further down the tree the process gets, the less time it
takes to complete a task.

This implementation of the octree partitioning algorithm
should not be seen as the best possible one, but only as a way
to compare the different work balancing methods.

6. Experimental Evaluation

Two different graphics processors were used in the exper-
iments, the 9600GT 512MiB NVIDIA graphics processor
with 64 cores and the 8800GT 512MiB NVIDIA graphics
processor with 112 cores.

We used two input distributions, one where all particles
were randomly picked from a cubic space and one where
they were randomly picked from a space shaped like a geo-
metrical tube, see Figure 1.

All methods where initialized by a single iteration using
one thread block. The maximum number of particles in any
given octant was set to 20 for all experiments.

c© The Eurographics Association 2008.

61

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 500

 1000

 1500

 2000

 2500

a) Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0
 200
 400
 600
 800
 1000

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

 600

b) Non-Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

 600

c) ABP Task Stealing

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 40

 60

 80

 100

 120

 140

 160

 16 32 48 64 80 96 112 128
Threads

d) Static Task List

Ti
m

e
(m

s)

Figure 2: Comparison of load balancing methods on the 8800GT. Shows the time taken to partition a Uniform (filled grid) and
Tube (unfilled grid) distribution of half a million particles using different combinations of threads/block and blocks/grid.

6.1. Discussion

Figure 2 and 3 shows the time it took to partition two dif-
ferent particle sets on the 8800GT and 9600GT graphics
processors using each of the load balancing methods while
varying the number of threads per block and blocks per grid.
The static method always uses one block per task and is thus
shown in a 2D graph.

Figure 4 shows the time taken to partition particle sets of
varying size using the combination of threads per block and
blocks per grid found to be optimal in the previously de-
scribed graph. The shapes of the graphs maps nicely to the
total number of tasks created for each distribution and parti-
cle count, as shown in Figure 5. The task count is higher with
the tube distribution since the octree is more unbalanced.

Figure 2 (a) clearly shows that using less than 64 threads
with the blocking method gives us the worst performance in
all of the experiments. This is due to the expensive spinning
on the lock variable. These repeated attempts to acquire the
lock causes the bus to be locked for long amounts of times
during which only 32-bit memory accesses are done. With
more than 64 threads the number of concurrent thread blocks

is lowered from three to one, due to the limited number of
available registers per thread, which leads to less lock con-
tention and much better performance. This shows that the
blocking method scales very poorly. In fact, we get the best
result when using less than ten blocks, that is, by not using
all of the multiprocessors! The same can be seen in Figure
3 (d) and 4 where the performance is better on the graphics
processor with fewer cores. We used 72 threads and 8 blocks
to get the best performance out of the blocking queue when
comparing it with the other methods.

The non-blocking queue-based method, shown in Figure
2 (b), can take better advantage of an increased number
of blocks per grid. We see that the performance increases
quickly when we add more blocks, but after around 20
blocks the effect fades. It was expected that this effect would
be visible until we increased the number of blocks beyond
42, the number of blocks that can run concurrently when us-
ing less than 64 threads. This means that even though its per-
formance is much better than the its blocking counterpart, it
still does not scale as well as we would have wanted. This
can also clearly be seen when we pass the 64 thread bound-

c© The Eurographics Association 2008.

62

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 500

 1000

 1500

 2000

a) Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0

 200

 400

 600

 800

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

b) Non-Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

c) ABP Task Stealing

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 16 32 48 64 80 96 112 128
Threads

d) Static Task List

Ti
m

e
(m

s)

Figure 3: Comparison of load balancing methods on the 9600GT. Shows the time taken to partition a Uniform (filled grid) and
Tube (unfilled grid) distribution of half a million particles using different combinations of threads/block and blocks/grid.

ary and witness an increase in performance instead of the
anticipated drop. On the processor with fewer cores, Figure
3 (b), we do get a drop, indicating that conflicts are expen-
sive for this queue implementation. Looking at Figure 4 we
see the same thing, the non-blocking queue performs better
on the processor with fewer cores. The measurements were
done using 72 threads and 20 blocks.

In Figure 2 (c) we see the result from the ABP task steal-
ing and it lies more closely to the ideal. Adding more blocks
increases the performance until we get to around 30 blocks.
Adding more threads also increases performance until we
get the expected drop 64 threads per block. We also get a
slight drop after 32 threads since we passed the warp size
and now have incomplete warps being scheduled. Figure 4
shows that the work stealing gives great performance and is
not affected negatively by the increase in number of cores on
the 8800GT. When we compared the task stealing with the
other methods we used 64 threads and 32 blocks.

In Figure 2 (d) we see that the static method shows similar
behavior as the task stealing. When increasing the number
of threads used by the static method from 8 to 32 we get a

steady increase in performance. Then we get the expected
drops after 32 and 64, due to incomplete warps and less
concurrent thread blocks. Increasing the number of threads
further does not give any increase in speed as the synchro-
nization overhead in the octree partitioning algorithm be-
comes dominant. The optimal number of threads for the
static method is thus 32 and that is what we used when we
compared it to the other methods in Figure 4.

As can be seen in Figure 2 and 3, adding more blocks than
needed is not a problem since the only extra cost is an extra
read of the finishing condition for each additional block.

Figure 5 shows the total number of tasks created for each
distribution and particle count. As can be seen, the number of
tasks increases quickly, but the tree itself is relatively shal-
low. A perfectly balanced octree has a depth of log8(n/t),
where t is the threshold, which with 500,000 elements and
a threshold of 20 gives a depth of just 4.87. In practice, for
the tube distribution, the static queue method required just 7
iterations to fully partition the particles and after just 3 itera-
tions there were a lot more tasks than there were processing
units.

c© The Eurographics Association 2008.

63

Daniel Cederman and Philippas Tsigas / On Dynamic Load Balancing on Graphics Processors

100

T
im

e
 (

m
s)

Uniform Distribution

10

100 150 200 250 300 350 400 450 500

Particles (thousands)

Blocking Queue Non-Blocking Queue Blocking Queue Non-Blocking Queue

Static List ABP Work Stealing Static List ABP Work Stealing

9600GT 8800GT

100

T
im

e
 (

m
s)

Tube Distribution

10

100 150 200 250 300 350 400 450 500

Particles (thousands)

Blocking Queue Non-Blocking Queue Blocking Queue Non-Blocking Queue

Static List ABP Work Stealing Static List ABP Work Stealing

9600GT 8800GT

Figure 4: A comparison of the load balancing methods on the uniform and tube distribution.

7. Conclusions

We have compared four different load balancing methods,
a blocking queue, a non-blocking queue, ABP task stealing
and a static list, on the task of creating an octree partitioning
of a set of particles.

We found that the blocking queue performed poorly and
scaled badly when faced with more processing units, some-
thing which can be attributed to the inherent busy waiting.
The non-blocking queue performed better but scaled poorly
when the number of processing units got too high. Since the
number of tasks increased quickly and the tree itself was rel-
atively shallow the static queue performed well. The ABP
task stealing method perform very well and outperformed
the static method.

The experiments showed that synchronization can be very
expensive and that new methods that take more advantage of
the graphics processors features and capabilities might be
required. They also showed that lock-free methods achieves
better performance than blocking and that they can be made
to scale with increased numbers of processing units.

Future Work

We are planning to compare the load balancing methods
used in the paper on other problems, such as global illumina-
tion. Based on the conclusions from this work we are trying
to develop new methods, tailored to graphics processors, for
load balancing.

300

3000

30000

0 100 200 300 400 500 600

T
a

sk
s

Particles (thousands)

Uniform Distribution

Tube Distribution

Figure 5: The total number of tasks caused by the two dis-
tributions.

References

[ABP98] ARORA N. S., BLUMOFE R. D., PLAXTON

C. G.: Thread Scheduling for Multiprogrammed Mul-
tiprocessors. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures (1998), pp. 119–
129.

[BL94] BLUMOFE R., LEISERSON C.: Scheduling multi-
threaded computations by work stealing. In Proceedings
of the 35th Annual Symposium on Foundations of Com-
puter Science, Santa Fe, New Mexico. (1994), pp. 356–
368.

[FS05] FOLEY T., SUGERMAN J.: KD-tree acceleration
structures for a GPU raytracer. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware (2005), pp. 15–22.

[HA98] HEIRICH A., ARVO J.: A Competitive Analysis
of Load Balancing Strategies for Parallel Ray Tracing. J.
Supercomput. 12, 1-2 (1998), 57–68.

[KR03] KORCH M., RAUBER T.: A comparison of task
pools for dynamic load balancing of irregular algorithms:
Research articles. Concurrency and Computation: Prac-
tice & Experience 16, 1 (2003), 1–47.

[NHP07] NYLAND L., HARRIS M., PRINS J.: Fast N-
Body Simulation with CUDA. In GPU Gems 3. Addison-
Wesley, 2007, ch. 31, pp. 677–695.

[SG91] SHEPHARD M., GEORGES M.: Automatic three-
dimensional mesh generation by the finite Octree tech-
nique. International Journal for Numerical Methods in
Engineering 32 (1991), 709–749.

[SMRR07] SOARES L., MÉNIER C., RAFFIN B., ROCH

J.-L.: Work Stealing for Time-constrained Octree Ex-
ploration: Application to Real-time 3D Modeling. In
Proceedings of the Eurographics Symposium on Parallel
Graphics and Visualization (2007).

[TZ01] TSIGAS P., ZHANG Y.: A simple, fast and scalable
non-blocking concurrent FIFO queue for shared memory
multiprocessor systems. In Proceedings of the thirteenth
Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures (2001), pp. 134–143.

c© The Eurographics Association 2008.

64

