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Abstract

In this paper we address the problem of extracting representative point samples from polygonal models. The
goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy
as a measure for sampling quality and propose new sampling methods based on global line distributions. We
investigate several line generation algorithms including an efficient hardware-based sampling method. Our
method contributes to the area of point-based graphics by extracting points that are more evenly distributed than
by sampling with current algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

In recent years, several algorithms for point-based computer
graphics have been developed [27]. These algorithms ad-
dress multiple aspects of point-based models, such as acqui-
sition, modeling, rendering, compression, storage, smooth-
ing, and water-marking. To extend the existing powerful tool
set of point-based computer graphics, this paper contributes
an algorithm for generating point samples from polygonal
models. The point samples generated by our algorithm can
then be used by modeling and rendering tools.

Traditionally, a strong argument given to support point-
based computer graphics is the simplicity of the represen-
tation. Rusinkiewicz et al. [28] for example, gave a com-
plete framework including sampling, level-of-detail render-
ing, and compression that was conceptually easy to under-
stand and easy to implement. Dachsbacher et al.[25] showed
impressive results for rendering point-based models by cre-
ating data structures optimized for hardware rendering.

The goal of this paper is to continue this tradition of sim-
plicity and robustness. Therefore, as input to our algorithm
we consider a soup of triangles with unknown connectivity
and topology. Our method works in the presence of smooth,
manifold surfaces, but it also has to consider a set of discon-

nected triangles, such as leafs of a tree (as will be demon-
strated in section 6).

Existing point sampling methods are directly related to
rendering. Therefore, the sampling algorithms are often tai-
lored to a specific rendering method. For example, many
splatting methods emphasize overlapping splats in screen
space rather than regularity of the sample distribution [28].
The general outline, of many algorithms is to sample a point
set and then post-process the point set according to quality
criteria imposed by the rendering method. Important repre-
sentatives are the sampling with layered depth cubes and the
following three-to-one reduction [22], or the sampling of ge-
ometry into an octree and the displacement of samples along
the surface normal [23]. Similarly, level-of-detail algorithms
for point sets emphasize specific rendering methods [24, 29].

The nature of our algorithms is fundamentally different,
because we set out by analyzing the sample distribution as
such, rather than the optimization for one specific algorithm.
Additionally, we want to create a framework that is applica-
ble to general models such as vegetation. In this context, we
cannot assume smooth, continuous surfaces. We also want
to constrain the samples to lie on the actual polygons.

The main contribution of this paper is a theoretical anal-
ysis of point sampling and the introduction of several meth-
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ods to create regularly distributed sampling points, including
a fast hardware assisted sampling implementation. We be-
lieve that the proposed sampling algorithms, will be an im-
portant complement to existing algorithms in a point-based
computer graphics toolbox.

2. Overview

We set out to build a theoretical framework that compares
different sampling strategies. The first important question
that we will address is how to compare the quality of sam-
pling methods and how to measure uniformity. In section 3
we will address this question and propose discrepancy as a
measure for sampling uniformity. In section 5 we will review
several sampling algorithms based on integral geometry and
show their evaluation and results in section 6.

3. Discrepancy as a measure of regularity

The discrepancy [11, 20, 16] can be viewed as a quantitative
measure for the deviation of a finite set ofd-dimensional
points from a totally even (regular) distribution (or, in other
words, as a measure of the irregularity of the distribution).
There are several formulations of the discrepancy. One of
them is star-discrepancy, which is defined with respect to the
family of subsets ofI d. Given a set of pointsC = x1, ...,xn of
Id, we can define their star-discrepancy in the following way

Disc∗(C) = max
A⊂Id

∣∣∣∣
n(A)

n
−V(A)

∣∣∣∣ (1)

whereA is anyd-dimensional cube inI d that contains the
origin, n(A) is the number of points that belong to cubeA
andV(A) is a normalized measure of the size of cubeA. That
is, the star-discrepancy is the maximum difference between
the relative number of points of a cube containing the origin
and its relative size.

Thus, the lower the discrepancy of a set of points, the
more regular their distribution. In general, sets of points
generated using pseudo-random generators (the ones pro-
vided by the programming languages) have a higher dis-
crepancy than the ones generated using quasi-Monte Carlo
sequences (see [11]). In fact, quasi-Monte Carlo sequences
have been specially designed to minimize the discrepancy
(this is the reason they are also called low discrepancy se-
quences). Quasi-Monte Carlo sequences were introduced in
Computer Graphics by Alexander Keller [19].

It can be shown [11, 20] that a set ofN points gen-
erated using pseudo-random values has a star-discrepancy

O(
√

loglogN
N ), whereas if we consider quasi-Monte Carlo se-

quences the star-discrepancy behaves asO( (logN)d

N ), whered
is the dimension. Note that the discrepancy grows as the di-
mension grows, but, sinceN−1 < N−1/2, there is always a

value ofN from which on this discrepancy is lower than the
one for pseudo-random generation.

4. Intersection with random lines

The basic tool to study intersections with random lines is In-
tegral Geometry [10]. Integral geometry allows us to study
and measure sets of lines, for example how many lines in-
tersect a convex body, how many intersect a surface, etc. In-
tegral Geometry defines a uniform density of lines that is
homogeneous and isotropic (invariant under rotations and
translations). An embedded bodyK is intersected by these
lines. The moments of the chord lengths have been well stud-
ied for convex bodies.

The measure of the lines crossing a convex bodyK is
given by [9, 10]:

Z

K
T

G
dG=

π
2

A (2)

whereG represents the uniform lines,dG its measure, andA
holds for the area ofK.

For a general non-convex bodyK equality (2) generalizes
to

Z

K
T

G
nGdG= πA (3)

wherenG is the number of intersections of lineG with object
K.

The resulting intersections withK are uniformly dis-
tributed over the area of the surface. This can be seen in the
following way. Consider a differential surface fromK, dA.
According to (2) the measure of lines crossing it isπdA (we
can consider it as a cylinder with height 0 and basedA). But
this is also the measure of the number of intersections.

Thus, we can sample points on the surface of a body using
in a uniform way by using uniformly distributed lines. These
lines can be obtained in several ways (see section 5.1) The
most simple case is enclosing the body in a 3D sphere and
selecting random pairs of points on the surface. (see Fig.1a).
The number of intersected points on areadA follows a bi-
nomial distribution given byBin(Nr ,β), whereβ = 2dA

As
is

the probability of a line crossingdA, As is the area of the
surrounding sphere, andNr is the number of lines cast. This
distribution can be approximated by a Poisson distribution
with meanNr β. In the case of generating lines from a general
convex bounding box [15] (see section 5.4)As is substituted
by the area of the box.

Lines can also be obtained using bundles of parallel lines
(see section 5.3, Fig.1b,2). The average number of intersec-
tions is now given bydAN

2∆ whereN is the number of bundles
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Figure 1: Points are generated from the intersections of lines
(left) and bundles of parallel lines (right).

Figure 2: Generating points from intersections with a bun-
dle of parallel lines.

and∆ is the area of the cell of the bundle (see section 5.3).
The number of intersected points on areadAcan be thus de-
scribed by a Poisson distribution with meandAN

2∆ .

5. Line density generation

We show here different alternatives to generate a global line
density (where global has the same meaning as uniform).
The first 3 methods involve sampling points uniformly dis-
tributed on the surface of a sphere. Next we describe the al-
gorithm to generate such points on sphere with centerc and
radiusr

Generate 2 valuesξ1,ξ2 uniformly distributed in[0,1)
cosθ = 1−2∗ξ1

sinθ=
√

1− (cosθ)2

ϕ = 2∗π∗ξ2
vDir = (sinθ∗sinϕ, cosθ ,sinθ∗cosϕ)
udPoint= c+ r ∗vDir

5.1. Two random points on a sphere surface

In [10] it is shown that the density of global lines intersect-
ing a convex bodyK (that is, density of chords) is given by
cosθcosθ′

r2 dσdσ′ , whereθ,θ′ are the angles of the intersect-
ing line with the normals in the intersected points,dσ,dσ′
are area differentials in the same points, andr is the length
of the chord. This density, for a sphere, becomes simply (ex-
cept a constant factor)dσdσ′ (see figure 3a).

(a) (b)

Figure 3: (a) Geometry for two points on sphere line generation.

(b) Geometry for incorrect line generation.

This means that taking pairs of random points in the
sphere surface we obtain a global uniform density of lines.
But observe that this is only valid for a sphere, this is, taking
pairs of points on the surface of a convex body does not re-
sult in a uniform density (except of course for the sphere). To
see how one can deviate from the uniform density, let us con-
sider taking pairs of points on opposite faces of an orthogo-
nal prism [6]. The correct density should be proportional to
cosθcosθ′

r2 dσdσ′, the one taken is proportional todσdσ′. The

ratio of the densities is proportional tocosθcosθ′
r2 . Now, ob-

serve figure 3b, from this figure cosθ = cosθ′ = d
r , thus the

ratio is proportional to1
r4 . This means for instance that for

twice the distance we cast 24 more lines that necessary. In
other words, much more lines are cast in oblique directions
than in orthogonal ones.

Observe also that the sphere density is equivalent to taking
a single point on the sphere and a direction from this point
weighted according to the cosine of the angleθ between the
radius at this point (this is the same to say the normal to
the tangent plane) and the direction. Thus, taking simply a
uniformly distributed direction does not result in a uniform
density of lines.

The sphere density is described in [13], and was first used
for Radiosity in [12] and in IBR in [1]. Interestingly, this
uniform density generation has not a counterpart in 2D. This
is, taking pairs of points uniformly distributed on a circum-
ference does not provide a uniform density within the cir-
cumference [13].
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5.2. Random direction and point in main circle

This is the generation that appears in classic IG books
[9, 10, 13] and it has been used in IBR by Camahort et al.
[1]. (See figure 4c). It is obviously equivalent to selecting a
tangent plane (thus a point in the sphere), and a point in the
projection of the sphere on the plane.

5.3. Bundles of parallel lines

If one limits randomness in the previously defined density to
selecting the tangent plane and taking the points on the plane
on a regular grid (see figure 4d), one obtains bundles of par-
allel lines. This density (see figure 4d) has been used in the
Radiosity context in [15, 14, 8, 17], and in IBR in [1, 7]. A
point to remark with this density is that the expected num-
ber of lines crossing a planar polygon with areaA given N
bundles of lines isAN

2∆ , where∆ is the area of the grid cell.
Another point is that the grid cell can be any parallelogram.
Also, to avoid aliasing, the origin of the grid can be jittered
[15]. The advantage of using bundles of parallel lines is that
fast projection algorithms as the z-buffer can be used.

5.4. Lines from the walls of a convex bounding box

Using the fact that the differential of solid angle around
dσ can be written asdω = cosθ′

r2 dσ′, we can transform the
chord density into cosθdω. This means taking a random
point on the surface of the convex bounding box and a cosine
weighted direction (see 4b). This density generation was first
described in [15]. It is useful as we can use the same bound-
ing box of the scene to generate the lines. Observe that this is
not the same as taking pairs of uniformly distributed random
points on the bounding box surface, which, as seen above, is
incorrect.

6. Results

6.1. Sampling points evenly distributed on a polygon

Our experiments are intended to study the distribution of the
points sampled on a polygon† by means of embedding it in a
uniform density of lines, as described above, and computing
the intersections between this polygon and the lines. Given
sets of points obtained in this way, we have computed their
star-discrepancies and compared their values corresponding
to different line generations, including pseudo-random num-
ber generators and quasi-Monte Carlo sequences. On the
other hand, lines have been generated using two different
techniques, both involving a bounding sphere:

• Sampling pairs of points on the surface of the sphere (see
5.1).

† For practical purposes we use a square, but the results are valid
for any planar or non-planar shape.

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

(a) (b)

P

A

(c) (d)

Figure 4: Different ways to simulate uniform global lines. (a) Two
random points on the surface of the sphere. (b)Local lines are cast

from the walls of convex bounding box. (c) Random direction defin-
ing a disc by the bounding sphere center, and random point in this

disc. (d) Tangent plane by a random point on the sphere surface and

bundle of parallel lines perpendicular to this plane.

• Sampling tangent planes (to the sphere) and generating a
bundle of parallel lines from each plane (using a grid) (see
5.3).

We have to remark that, since the uniform density of lines
is known to be invariant under rotations and translations, the
quality of the results (that is, of the point sets) is independent
on the position of the polygon.

We have also compared the sets of points mentioned
above with sets of points sampled directly on the polygon
using pseudo-random numbers and quasi-Monte Carlo se-
quences. Next we present the results obtained in our experi-
ments.

NOTE: In the case of point sets generated using pseudo-
random number generators (the ones used in Monte Carlo in-
tegration), the values of the star-discrepancy have been com-
puted by averaging the results obtained in several indepen-
dent tests.

6.1.1. Points sampled directly on the polygon

We have sampledN points directly on the polygon us-
ing pseudo-random number generators and different quasi-
Monte Carlo sequences like Halton, scrambled Halton,
Sobol, Weyl and Hammersley ones (for a description on
these quasi-Monte Carlo sequences, see [11, 20, 4]). Note
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that, for each point, 2 values in the interval[0,1) are re-
quired.

Fig. 5 showsN = 1000 points generated using these tech-
niques. Star-discrepancies have been computed for each of
these 6 sets of points, and values obtained using quasi-Monte
Carlo sequences have been near one order of magnitude
lower than using pseudo-random generators. The Hammers-
ley sequence has performed specially well.
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Figure 5: 1000 2D points sampled directly on the polygon using:

(a) Pseudo-random numbers. (b) Halton sequence. (c) Scrambled
Halton sequence. (d) Sobol sequence. (e) Weyl sequence. (f) Ham-

mersley sequence.

We have experimented with different values ofN for each
of the generations. In the graph in Fig. 6 we representN
(x-axis) vs. star-discrepancy (y-axis). Values of the discrep-
ancy corresponding to pseudo-random generation are in all
cases more than one order of magnitude higher than the ones
obtained using quasi-Monte Carlo sequences, and so those
values have been removed from the graph to avoid scale

distortion. Comparing the different quasi-Monte Carlo se-
quences, the Hammersley sequence behaves the best accord-
ing to star-discrepancy, followed by scrambled Halton and
classical Halton ones. Finally Sobol and Weyl sequences be-
have the worst in this experiment.

Referring to asymptotical behavior, we note that star-
discrepancy of the 2D-point sets seems to follow the ex-

pectedO( log2N
N ) for the quasi-Monte Carlo generation in di-

mension 2, but this is not true for pseudo-random (Monte
Carlo) generation, where star-discrepancy decreases slowly

(its expected behavior isO(
√

loglogN
N )).
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Figure 6: Number of points N times10−3 (x-axis) vs. star-

discrepancy times106 (y-axis) for different point sets generated di-
rectly on the polygon. The curve corresponding to pseudo-random

generation has been removed from the graph to avoid scale distor-
tion, since these values are more than one order of magnitude higher

than the rest.

6.1.2. Points sampled using lines obtained from pairs of
points on a bounding sphere

Now the polygon has been bounded by a sphere. A uniform
density of lines has been generated in the sphere by means of
sampling pairs of points on its surface (see 5.1). For each line
that intersects the polygon, the intersection point has been
considered, obtaining in this way the point set. Note that in
this case we deal with 3D-points, but since such points be-
long to a polygon, they can be easily mapped on a 2D space.
Note also that 4 values in the interval[0,1) are required for
each line. Thus the required dimension is 4 instead of 2.

The same pseudo-random generation and quasi-Monte
Carlo sequences experimented in the previous section have
been used here. Sets of 1000 2D points have been generated.
Referring to star-discrepancies of these point sets and com-
paring them with the ones obtained using direct generation
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of the points (see section 6.1), the main fact observed is that,
while the discrepancy obtained using pseudo-random num-
bers is very similar to the one obtained in 6.1 (with this gen-
erator), the discrepancy obtained using quasi-Monte Carlo
sequences is clearly bigger (about 3 times) than the one ob-
tained in 6.1. This involves a reduction of the advantage (re-
ferred to discrepancy) of quasi-Monte Carlo sequences in
front of pseudo-random generation when point sets are ob-
tained not by direct sampling on the polygon but intersecting
it against sets of uniformly distributed lines. Hammersley
and Halton sequences behave the best in this experiment.

We have tested different values ofN for each of the gener-
ations. In the graph in Fig. 7 we represent number of points
N (x-axis) vs. star-discrepancy (y-axis). A higher discrep-
ancy for pseudo-random generated sets is observed in almost
all cases, but the differences respect to quasi-Monte Carlo
generation have been reduced regarding to the ones obtained
in section 6.1.1. We note also that Weyl sequence behaves
clearly worse than the rest of quasi-Monte Carlo sequences
(that present a similar behavior) in this experiment.
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Figure 7: Number of points N times10−3 (x-axis) vs. star-

discrepancy times106 (y-axis) for different point sets generated by
intersecting the polygon against sets of uniformly distributed lines

generated in a bounding sphere by sampling pairs of points on its
surface.

Finally, and regarding to the asymptotical behavior, we
note that here the star-discrepancies of the 2D-point sets gen-
erated using quasi-Monte Carlo sequences seem to follow

the expectedO( log4N
N ) for the quasi-Monte Carlo generation

in dimension 4, and thus the discrepancy decreases slower
than directly generating the points on the polygon (note that
in pseudo-random generation the discrepancy behavior does
not depend on the dimension).

6.1.3. Points sampled using bundles of parallel lines
generated from tangent planes

This technique (see section 5.3) also involves generating
lines and computing their intersections with the polygon.
We also need a bounding sphere. The randomness relies on
sampling, for each of theN bundles, a tangent plane (whose
normal vector constitutes the direction of all the lines in the
bundle), and also an origin point for a regularn×n grid on
the plane (whose cells constitute the origin of then2 lines in
the bundle). This involves sampling (for each bundle) a point
on the sphere surface that sets the tangent plane, and a point
on the plane that sets the origin of the regular grid. That is,
4 values in the interval[0,1) are required for each bundle of
lines.

A first question to be solved when dealing with this gen-
eration is the relation betweenN, the number of bundles
(planes) andn, the number of linear subdivisions in the grid.
From some previous tests, we have consideredN = n a good
relationship, and all the experiments presented in this sec-
tion are based on it. Note that with this relationship the total
number of lines used isN3. Further experiments have shown
to be optimal the relationshipN = 3

4n.

The first experiment, like in the previous sections, con-
sists of generating approximately 1000 points on the poly-
gon using pseudo-random values and the quasi-Monte Carlo
sequences used previously. Star-discrepancies are in general
lower than the ones obtained in the previous section. Fig. 8
compares the 2Dprojections of such point sets (for pseudo-
random generators and the Halton sequence) with the ones
obtained when using lines from pairs of points on a bounding
sphere (see 6.1.2). The rest of quasi-Monte Carlo sequences
behave in a similar way.

In Fig. 9 we present a graph in which x-axis represents
the number of sampled points and y-axis represents the star-
discrepancy. From observing this graph, the first conclu-
sion is that all the generations, including pseudo-random
numbers, present similar values for the star-discrepancy.
Thus, there is not any significant difference between pseudo-
random numbers and quasi-Monte Carlo sequences when us-
ing bundles of parallel lines. This behavior probably corre-
sponds to the lower influence of the random factor in this
generation, due to the use of the regular grid.

We have also represented in this graph the values of
the star-discrepancy obtained using direct generation of the
points in the polygon (see section 6.1.1) and pseudo-random
numbers, in order to compare them with the corresponding
values using bundles of parallel lines. The interesting point
is that the discrepancy appears to be clearly lower (up to 3
times) in this last case. This means that for pseudo-random
generators (the ones provided by the computers) is more ap-
propriate using the bundles of lines technique than directly
sampling the points in the polygon. We can visually confirm
this behavior by comparing Fig. 5 (a) and Fig.8 (a): this last
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Figure 8: (a) and (b) show 1000 2D points obtained from the in-

tersection of the polygon against lines from pairs of points sampled
on a bounding sphere using pseudo-random numbers in (a) and the

Halton sequence in (b). (c) and (d) also show 1000 2D points ob-

tained now from the intersection of the polygon against bundles of
parallel lines.20 bundles have been used in this experiment, and

tangent planes and origin points for the corresponding grids have
been obtained using pseudo-random numbers in (c) and the Halton

sequence in (d). Note the higher regularity of the distribution when

using bundles of parallel lines.

set of points appears to be more evenly distributed than the
first one.

On the other hand, there is a noticeable reduction of the
star-discrepancy when using this generation respect to the
values obtained when generating the lines from pairs of
points sampled on the surface of the bounding sphere (see
previous section). Star-discrepancy is reduced to approxi-
mately one half with quasi-Monte Carlo sequences and to
approximately a third part when using pseudo-random val-
ues. These results show this generation technique to be su-
perior than the technique involving sampling pairs of points
on the sphere (at least regarding to the discrepancy of the ob-
tained point sets). This fact is shown, for the case of Halton
sequences, in Fig. 10.

Regarding to the asymptotical behavior, we note that
here, like in the previous section, the star-discrepancy values
corresponding to quasi-Monte Carlo sequences seem to

follow O( log4N
N ) as expected for dimension 4.

Systematic sampling for tangent planes
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Figure 9: Number of points times10−3 (x-axis) vs. star-

discrepancy times106 (y-axis) for different point sets generated by
intersecting the polygon against bundles of parallel lines generated

using tangent planes and regular grids. We have also represented

the discrepancy for the point sets obtained using pseudo-random
values and direct generation on the polygon.
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Figure 10: Number of points times10−3 (x-axis) vs. star-

discrepancy times106 (y-axis). Generation of lines using pairs of
points on a bounding sphere is compared with the tangent planes

technique, which offers better results. Halton sequences have been

used in both cases.
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We have tested the generation of the tangent planes
using systematic sampling (that is, using a regular grid
mapped on the sphere to obtain the points that set the
tangent planes). The results obtained do not improve the
ones obtained without this kind of sampling. Thus, this
strategy has been discarded.

Use of only3 axis-aligned planes

Another experiment has been done in the sense of us-
ing only 3 axis-aligned planes. In this case, the regularity
of the distribution of the points strongly depends on the
position of the polygon respect to such planes, that is,
depends on the direction of the normal to the polygon (the
more similar this direction to the direction of one of the
3 planes, the worse the results). This makes this strategy
to be unsuitable for a complex environment in which the
polygons are supposed to have any direction.

6.2. Hardware assisted sampling

We have implemented a tool to sample meshes using bun-
dles of lines with the depth-peeling algorithm ([26]). The
algorithm works as follows:

For each direction of extraction (generated with Monte
Carlo), the first step is to obtain the intersections of the mesh
with the bundles of lines. Depth-peeling obtains a set of lay-
ers from a scene by using a front depth buffer updated along
multiple render passes. These layers effectively contain the
intersections with the bundle of lines along the viewing di-
rection.

The second step of the algorithm is to reconstruct the 3D
positions and additional information (color, normal, etc.) of
the samples on each layer, by using both the rendered buffer
and the depth buffer of each layer. This second step is per-
formed in the CPU and involves processing all the pixels on
each layer and generating the point samples.

The tool is very fast and works at interactive rates for the
models used in this paper.

6.2.1. Implementation results

We have tested our algorithm with two models. The first
model, Venus, consists of 43.357 polygons and the second
model, Tree, contains 32.196. Our tool allows to select the
number of directions and the resolution of the bundles. The
tests have been done on a Pentium-M 1.5 notebook with a
GeForce FX 5650.

In figure 11 (right) we show the results of sampling the
Venus model with 12 bundles. The time to obtain the point
cloud is 0.78 seconds. For comparison purposes, in figure 11
(left) we show the result with sampling with only 3 mutually
orthogonal directions (as in [22]), but containing the same

number of rays than the 12 bundles (using denser bundles).
The time to obtain this point cloud is 0.22 seconds. Observe
the much better point distribution in the right image obtained
at not much higher cost.

Figure 11: Point clouds obtained using 3-axis projection (left) and
using Monte Carlo to determine the directions (right). Both contain

around 12K points.

Another benefit of using hardware rendering to obtain the
ray intersections is the possibility to use texturing to apply
transparency masks to the polygons. With this algorithm you
can sample only the used area of each polygon without a
noticeable extra cost. This is useful for plant models where
the detail of the shape of the leaves is added with a partially
transparent texture. See figure 12 for an illustration of this
idea.

Figure 12: This figure illustrates another benefit of hardware-

based sampling. Textured polygons (left) can be sampled according
to an alpha-texture and samples are only created only at opaque

surface points automatically.
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6.2.2. Algorithm efficiency notes

The effect of the mesh size on the efficiency of our algo-
rithm is lower than in most CPU-based algorithms. Instead,
the processing of the layers done in CPU takes most of the
time. A possible optimization would be to encode the world
position in the color buffer, as it would make unnecessary
to use the depth buffer to re-transform from camera-space
to world-space in CPU. This is only possible if rendering to
floating-point buffers is supported.

Another difference with CPU-based algorithms is that ex-
tracting information from a sample is limited to the capacity
of the render buffers. For this reason, to extract all the infor-
mation like the color, the normal, etc., more than one buffer
might be needed and thus, more than one rendering pass for
each layer and for each direction. CPU-based algorithms can
extract all the information when computing the ray-mesh in-
tersections, but they are still slower.

6.2.3. Hardware limitations

There are some sources of error on our hardware-based al-
gorithm.

The first one comes from the depth-peeling precision. The
depth of each pixel in the front depth buffer is encoded with
limited numerical precision, and as a consequence, inade-
quate peeling can happen for surfaces which are very close.
This limitation can be almost eliminated by using floating-
point precision buffers supported in the current generation of
hardware.

The second source of error comes from the resolution
used to extract the layers. When reconstructing the world
position of the samples using the render buffer and depth
buffer, each pixel actually represents a whole parallelepiped
in the space. Setting the position in its center is an approx-
imation that can give large errors if the render resolution
(density of the bundles) is low. Encoding the world position
in the color buffer instead as explained in the previous sec-
tion overcomes this problem. Current hardware maximum
rendering resolutions is around 4096 pixels, for this reason
denser line bundles would require splitting the process and
doing multiple depth-peeling extraction for each direction.

7. Conclusions and future work

We have studied the distribution of point sets obtained by
intersecting polygons against a set of lines uniformly dis-
tributed around the polygons. This procedure allows to eas-
ily generate such point sets on a large polygonal model using
the same set of global lines instead of generating each point
set individually in each polygon.

We are interested in generating sets of points that are the
most regularly distributed on the polygons. As a measure
of the regularity of the point sets we have used the star-
discrepancy: the lower the star-discrepancy, the more reg-
ularly distributed the points. This value tends to decrement

Figure 13: Tree mesh model (left) and a 44K point cloud extracted

with our algorithm (right) in 3.41 seconds.

as the number of points (and so the number of lines) grows.
Thus, given a certain number of lines, we aim for obtaining
the lowest values of the star-discrepancy.

According to our experiments, the discrepancy values ob-
tained using bundles of parallel lines are noticeably lower
than the ones obtained with lines generated from pairs of
points sampled on a bounding sphere (see Fig. 10). Regard-
ing to the generation of the[0,1) values, there are no impor-
tant differences between pseudo-random numbers and quasi-
Monte Carlo sequences when using bundles of parallel lines
(some quasi-Monte Carlo sequences seem to be just a bit
superior than pseudo-random numbers). Conversely, when
generating the lines from pairs of points on the sphere, quasi-
Monte Carlo sequences happen to be clearly superior than
pseudo-random numbers.

Another interesting result is that, unlike quasi-Monte
Carlo sequences, pseudo-random numbers behave clearly
better (that is, produce point sets with lower discrepancy)
when generating the points using bundles of parallel lines
than when directly sampling the points on the polygons (see
section 6.1.3).

Finally, we have implemented the bundles of parallel lines
on a hardware-based tool that is able to extract the point set
of a polygonal model at interactive rates.

As a future work we plan to investigate the use of system-
atic and adaptive sampling of directions to further improve
the discrepancy.
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