‘Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2011)

J. Bender, K. Erleben, and E. Galin (Editors)

Introducing congestion avoidance into CUDA based crowd
simulation

F. Wockenfuss and C. Liirig

University of Applied Science Trier

Abstract

The simulation of larger crowds of peoples at interactive frames rates get more and more important in games
and interactive simulations. Crowds contribute significantly to an immersive urban environment. The nature of
the problem where one has to simulate a lot of individuals makes it very accessible for parallelization strategies.
As graphics hardware today is a very accessible and powerful parallel computation hardware, the problem lends
itself to be adapted to graphics hardware. It is implemented in CUDA in our case.

CUDA and other parallel implementations of social force models usually have several numerical and paralleliza-
tion issues that are finally based on too inhomogeneous population distributions. These are often also undesirable
from a game developers point of view. In this paper we introduce the concept of congestion avoidance into the
crowd simulator that solves those technical issues and makes the whole simulation also look more natural for

gaming applications.

Categories and Subject Descriptors (according to ACM CCS): 1.6.8 [Simulation and Modeling]: Parallel—Gaming

1. Introduction

Using crowd simulation has become increasingly popular in
video games over the recent years as one can see in games
like [Ubi07,EA10,SCE10]. One can expect this trend to con-
tinue in the future. Implementing crowd simulation in games
requires a high degree of efficiency and the usage of con-
sumer level hardware. Therefore standard GPUs (graphics
processing units) lend themselves well to that problem. If
implementing a crowd simulator one has to observe that nu-
merical stability in gaming applications is far more impor-
tant than accuracy. Additionally for aesthetics reasons con-
tinuous crowd movements and a mostly homogeneous den-
sity is highly desirable.

The approach to crowd simulation we take in this paper is
based on a social force model. The idea behind that approach
is that the objective of the individual and the situation around
it exert several forces on the simulated individual that result
in acceleration and therefore movement. The most promi-
nent early publication is the paper of Reynolds [Rey87]
on flocking behavior. In this paper repulsive and attractive
forces between individuals are used to model crowd behav-
ior. The approach we follow here is more oriented towards
the social force model of Helbing [HM95]. We only use

(© The Eurographics Association 2011.

DOI: 10.2312/PE/vriphys/vriphys11/101-110

repulsive forces between individuals. Those however also
take orientation and velocities of people also into account,
which results in a more naturally looking pedestrian simu-
lation in crossing traffic simulations. Alternative approaches
to crowd simulation are simulations based on queuing mod-
els like the one followed by Strippgen and Nagel [SN09] or
simulations based on cellular automates like used by Kliipfel
et al. [KMKWSO00]. The queuing based approach would be
more suited for traffic simulation and the cell based one for
evacuation scenarios. For general pedestrian simulation in
games variations of the social force model are generally the
most suited.

The implementation of the simulation is done in
CUDA [NVIO8]. CUDA is a library from NVIDIA for
NVIDIA graphics cards that provides possibilities to use
graphics processing units for general purpose computing.
Therefore it is called GPGPU computing. Graphics cards
processors are massive parallel streaming processors that put
a high amount of transistors in actual data processing and
a very low amount if it in caching logic. Therefore those
processors are optimized for high bandwidth at the cost of
latency. CUDA and GPGPU computing in general provide
the possibility for very efficient implementations of highly

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys11/101-110

102 F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA

parallelizable and compute intensive problems on consumer
level hardware. As crowd simulation itself is highly paral-
lelizable it lends itself very well to CUDA implementation.
CUDA provides the opportunity to spawn many threads that
are grouped into thread blocks. Threads of one block share a
certain amount of memory and can be synchronized between
each other. As with all parallel architectures an efficient im-
plementation within this system depends on the efficient use
of the local memory and keeping the amount of synchroniza-
tion points minimal.

CUDA has already been successfully used for crowd and
pedestrian simulation. Strippgen and Nagel [SN09] have im-
plemented a queue bases simulation approach for traffic sim-
ulation. There are also already a couple of publications avail-
able that are based on social force models. Richmond et
al. [RCRO9] describe a simulation framework for pedes-
trians based on CUDA. As they use a social force based
system they analyze all the relations between the different
agents and therefore obtain a problem of quadratic complex-
ity. Their argument is that even though they have quadratic
complexity the algorithm suits itself for efficient paralleliza-
tion on CUDA. In their predecessor paper [RR08] they have
used traditional pixel and fragment shaders to address the is-
sue. Traditional fragment shaders have also been used in the
work of Rudomin et al. [RMHO05] and Souza et al. [DLRO7].
Rudomin stores the individual states of the agents in differ-
ent textures. Souza uses a cell based approach in simulation.

Erra et al. [EFSC09] make use of the fact, that the in-
fluence between crowd agents usually diminishes with dis-
tance and therefore can be culled outside a certain radius.
This reduces the problem complexity significantly. A uni-
form cell structured is applied that covers the whole area of
pedestrians that should be simulated. Only a certain amount
of neighboring cells must be regarded when simulating one
agent. The cell structure provides the required data local-
ity for the parallelization solution in CUDA. As for memory
reasons only a certain amount of people can be simulated per
thread block and therefore per cell. To achieve this a global
sorting process is included before every simulation update
to provide the necessary load balancing mechanism for ev-
ery thread block.

As one can also see from those experiences implementing
a crowd simulator in CUDA based on a social force model
usually comes with three main difficulties.

e The first difficulty is the reduced data locality of the prob-
lem that originates from too varying crowd densities. In
crowded areas there should me more threads used per
square meter space. The compute source requirements de-
pend on the numbers of persons to simulate. If the crowd
density can vary significantly a dynamic load balancing
scheme has to be introduced to readjust the cell sizes in a
global processing step.

o The second problem is the numerical instability that stems
from the explicit integration of social force models. This

usually appears also in areas of high crowd density. High
densities result in high repulsive forces and therefore re-
sult in stiff equations.

e And last but not least a too high crowd density is often
not suitable for games as the visibility of a single crowd
member to the player get too much reduced. Local behav-
ior may look twitchy even if the simulation is still numer-
ically stable.

In this paper we solve this problem by controlling the
crowd densitys in the first place. As a too high crowd density
is the root of all three problems we enforce that only a certain
maximum of people can be allocated in a cell of a uniform
grid we put over the simulated surface area. Additionally we
add an extra force to our simulation mode that make crowd
members steer away from almost completely filled cells. We
call this behavior congestion avoidance. This is analogue to
the force component that make crowd members steer away
from individuals and is usually called collision avoidance.
Congestion avoidance works on a longer range and more
coarse granular scale than collision avoidance. It prevents
people from getting into too densely populated areas. This
effect can further be enhanced by introducing crowd disper-
sion. Crowd dispersion adds an attractive force towards areas
of low crowd density.

This approach eliminates the global sorting and prepro-
cessing step. The cell size is adjusted to the influence range
used in the simulation. This way all cells only need to know
the situation on the neighboring cells. Therefore before each
simulation step every cell is informed by its neighboring
cells what happened within them during the last simulation
step. Afterwards every cell updates its agents. If an agent is
about to leave a cell this information gets transfered to the
corresponding neighbor cell afterwards. The simulation re-
sponsibility of this gets transfered to the neighboring cell
also. The communication between the different cells and
therefore thread blocks is done over a blackboard archi-
tecture as described in [BMR*96]. The data exchange and
overlapping memory access is therefore always limited. The
blackboard is allocated in the device memory.

As a side effect we avoid the A-stability problems of ex-
plicit Euler integrators that are usually applied in social force
models. When used on too stiff differential equations ex-
plicit integrators cause stability problems where the whole
system starts oscillating increasingly. In the case of crowd
simulation equations get stiff in conditions of low distances
between actors. In this case the repulsive forces get very
high. As we limit the crowd density to a controlled and
known value this can not happen in our case. Also limiting
the crowd density avoids twitchy and unnatural looking re-
actions which often break the suspension of disbelieve in a
gaming context.

The outline of the remains of this paper is as follows: Af-
ter discussing the related work in the following section the
implementation of the social force model in CUDA will be

(© The Eurographics Association 2011.

F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA 103

described. The exact force calculation will be discussed as
the distribution strategy of the crowd members among the
different thread blocks. This discussion include the black
board architecture that is used to provide communication be-
tween the different blocks. Afterwards follows the descrip-
tion of the real innovation of this paper that makes this black-
board approach feasible which is the introduction of the con-
gestion avoidance component. Then we will discuss some
results with performance values for different avoidance sit-
uations. Here we will also show that congestion avoidance
and crowd dispersion in pedestrian simulations provides vi-
sually pleasing results. Finally we conclude with some pos-
sibilities for future work to extend the pedestrian simulation.

2. Related Work

Pelechano et al. [PABO7] explain that crowd simulation ap-
proaches are either rule based, cell based or based on social
forces. The social force model is the most suited one for sim-
ulating large amount of pedestrians. This is the objective of
this paper. Social force models contain elements of repulsion
and attraction like used in the work of Erra et al. [EFSC09].
The component of attraction is used for flocking behavior.
In this work we focus on the most important force compo-
nent in biological simulation which is the repulsion compo-
nent [KRO2].

The social force model used by Helbing [HM95] also con-
centrates on repulsion to simulate the movement of pedestri-
ans. This model calculates the reactions of simulated pedes-
trians as reactions to a social forcefield. This forcefield is
created by social forces, which act much like physical forces.
While agent based simulations try to calculate the expected
reaction as the result of different conditions and prerequi-
sites, the social force model adds up all forces created by the
environment and simulates the person being moved by these
forces much like a physical particle in a fluid or gas would
be. One primary force for the simulated pedestrian is the mo-
tivation to move to a certain goal, which creates an attractive
force pulling the pedestrian straight to his goal. Obstacles
like walls do not only block the movement of a pedestrian,
but also create a repelling force. This simulates believable
behavior, since real pedestrians leave a certain amount of
free space to obstacles when moving around freely.

In Helbings work pedestrians create a forcefield, which
depends on the velocity and relative position to the target and
the orientation of both the target and the pedestrian itself.
These factors account for the fact that pedestrians need more
space when moving faster, and pedestrians react stronger to
others in front of them than behind them. Another factor is
the early avoidance of pedestrians walking straight at each
other, which results in a spike in the forcefield right in front
of the pedestrian, which can be observed in figure (fig. 1).
This forcefield is scaled by the current speed, the crowd den-
sity and orientation of the target. For each pairing of two
pedestrians a unique force field is created.

(© The Eurographics Association 2011.

e

Ta

Figure 1: The forcefield created by a pedestrian for a certain
target as extracted from Helbing [HM95]

The force representing the influence on the target by this
pedestrian can be calculated by sampling the forcefield at the
position of the target. This leads to the following formula:

fap =~V Se= Vra=rp)-e1P+[(ra—rg)-e2]*/(Y)2/R

This formula encloses the term Yo which is calculated in
accordance to the pedestriance orientation and velocity:

0 if [ra(t) = rg(1)]-e2(r) > 0
Y“(t):{ 1+ Arda(r) if [m@)—rﬁ(r)]-eia)w

The factor S is a general strength factor (in our case it is
1.0). R is the influence radius of a crowd member, which is
usually 4m in our case. The meaning of the remaining sym-
bols can be deduced from figure (fig.).

As stated before problems may occur with this approach
in areas of high population densities as the resulting equa-
tions get stiff to avoid overlapping pedestrians. This makes
the approach not suitable for an explicit differential equa-
tion integrator. Lakoba et al. [LKF0S5] solve this problem
by implementing a special numerical algorithm that treats
the overlapping of persons separately. As we are less inter-
ested in panic situations as Lakoba et al. but more in general
moving crowds in game situations we choose a different ap-
proach, where we try to avoid the situation by introducing
congestion avoidance.

In order to implement this model efficiently, strategies for
creating thread blocks as described by D. Kirk and W. W.
Hwu in [KmWHI10] are used in this work. As depicted in
various case studies, the efficiency of a CUDA kernel de-
pends heavily on the right usage of the various memory loca-
tions and hardware limitations of the GPU (see for intances
[NVI11]). Access to global memory is one of the bottlenecks
in parallel GPU programming, since these accesses impose
a delay of several cycles and suffer from limited bandwidth.
The goal is to minimize accesses to global memory and align
the reading of global memory to gain the benefits of coa-
lesced memory access. The fastest memory for communi-

104 F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA

cation between threads is the shared memory, accessible by
all threads in a single threadblock. But the maximum size of
shared memory available on a single Multiprocessor on the
GPU require a detailed balancing of several limits. To gain
optimal occupancy each multiprocessor should work on a
maximum number of threads at one time. Occupancy is the
percentage of computational resources actually used in cal-
culation of the kernel. Without several tests and balancing a
significant amount of calculation power is wasted.

As an alternative to CUDA and PC graphics cards
Reynolds [Rey06] has implemented a Crowd simulator on
the PS3 for gaming purposes. This approach is of course re-
stricted to a specific console.

3. Development of Crowd Simulation

In order to reduce the high complexity of Crowd Simula-
tion we use a cell based approach for storing all individ-
uals. A uniform grid structure harbors a lot of advantages
compared to dynamic grids or nearest-neighbor searches. A
uniform grid offers good data-locality for entities close to
each other. No preprocessing or sorting is required. New
local forces like attractive elements can easily be imple-
mented on a per-cell basis using all benefits of data-locality.
The trade-offs of a uniform grid structure are the massive
memory-requirement, since each cell in the grid needs to re-
serve enough memory for the maximum number of entities
it can sustain at any one time, and the load balancing for
almost empty cells.

The uniform grid structure is defined by two parameters:
the dimensions of a single cell in world space (e.g. meters)
and the maximum number of entities a cell can affiliate.
These parameters are dominated by two requirements, the
first being the actual requirements of the expected behavior
of pedestrians, second being the hardware requirements for
efficient parallel processing on the GPU. Since our approach
uses a uniform grid where only the 8 adjacent cells are con-
sidered for computing the social forcefield, the dimensions
of a single cell have to be at least the size of the cognition
range of a pedestrian. Following [HM95] the rejective social
force created by an individual has a maximum range where
it can influence others. This range can be reduced further
by ignoring minimal forces which are not feasible in a run-
ning crowd simulation in games. Altogether we calculate a
maximum range of 4 to 5 meters which is even smaller as
crowd density increases. The cell dimensions are hence set
to 4 % 4m” for the standard crowd simulation.

The maximum number of pedestrians per cell is predeter-
mined by two factors. Modern CUDA-GPUs process kernels
in a fashion where the massive number of parallel threads
is divided into thread blocks. Each thread block has to be
executed on a single multiprocessor and shares a certain
amount of fast memory, only accessible by threads in this
block. Each thread block is further splitted into warps of 32

Table 1: Cell size for different Crowd-Densities

Crowd Type | Density per m*> | No. People per Cell
Lose Crowd 1.07 17
Tight Crowd 2.39 38
Packed Mob 43 69

threads each, which are executed in parallel by one multi-
processor, while other warps of the same threadblock are
scheduled to run when the current warp executes multi-cycle
operation like loading data from global memory. Thus for
optimal performance a maximum number of 32 individuals
per cell would be desirable, so each cell can be computed
by one warp which provides optimal performance if thread
coherence is high. The second factor is the expected den-
sity of simulated crowds. Following Herbert Jacobs and re-
lated works like [SV99] the estimated density for crowds
can be approximated by 1.07 people per m? for lose crowds,
where individuals can still navigate to any place. A density
of 2.39/m? for dense crowds, which are already to dense
to move around without major problems and and a max-
imum of 4.3 /m2 for a tightly-packed mob, which usually
only erupts in panic scenarios. These proportions are sum-
marized in table 1. With our cell size of 16m” we can calcu-
late a maximum value of 17 to 38 individuals per cell, where
38 people would already be too dense for a moving crowd.
Since the overall goal of this work is to provide a simula-
tion for games, where the crowd should always be distin-
guishable and smoothly animated, a maximum number of
32 People per cell is quite enough if we want to avoid heavy
congestion, which roughly starts at 30 people per cell given
the chosen dimensions.

Each individual in our simulation needs to store at least
its current position and velocity to save its current state.
But the individuals also need a personal goal, which can
be specified by the Al of the game and serves as an attrac-
tive force for the individual. Another additional component
needed for rendering is the direction in which the charac-
ter is currently facing, which not always equals the direction
of the current velocity, since people tend to move sideways
or even backwards without rotating their body much when
evading smaller obstacles in their way. Each space in a cell
also needs a flag to indicate if the current space is free or oc-
cupied, because storing this information in a central register
would lead to too much synchronization overhead. This is
also the reason for storing all state-information per individ-
ual immediately in the cell space which the person currently
occupies. Although this enlarges the memory requirements,
current graphics hardware has more than enough memory to
accommodate for this. The data layout can be designed with
different compression, which always brings down memory
requirements, but adds calculation time for decompression.

We tried several layouts as shown in table 2. While Set A

(© The Eurographics Association 2011.

F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA 105

Table 2: Different Data Layouts for State Data

Set A B C
State int (4) short (2) char (1)
Goal int (4) ushort (2) | short (2)

Position float2 (8) | ushort2 (4) | char2 (2)

Velocity float2 (8) | short2 (4) | char2 (2)

Direction float2 (8) short2 (4) char (1)
Overall Size 32 Byte 16 Byte 8 Byte

consumes 8 times as much memory as a 32-bit Pointer or an
Integer array index, Set B and Set C come at a reasonable
size. The best overall Performance can be achieved with Set
B, providing a compromise between size and compression
complexity. All layouts need to be 8-Byte aligned for coa-
lesced memory access, whereas an overall alignment of 128
Bytes per cell provides the best per warp memory access. Set
B provides 32 x 16 = 512 Bytes per cell, so the whole data
for one warp can be loaded in 4 coalesced operations. The
overall Memory footage is also negligible small with 1 MB
for every 2000 Cells so even a huge city could be simulated
with the memory consumption of a small texture.

To process the simulation, in each step every individual
has to be influenced by the forcefield created from all in-
dividuals around him. The influence of all individual force-
fields are added up to a single force vector which modifies
the current velocity of the individual. It is therefore a gather-
ing approach. To achieve this, each of the up to 32 individ-
uals of each cell has to be influenced by the 31 individuals
in the same cell and the 32 individuals of the 9 surrounding
cells. This could be solved by 32 Threads in a thread block,
each calculating the accumulated influences of all possible
287 individuals. But the GPU design of current CUDA hard-
ware demand certain factors considering the overall number
of threads, number of thread blocks and grid dimensions in
dependency of the number of registers and shared memory
each thread uses. The best performance can be attained by
reaching maximum occupancy on the GPU with a high num-
ber of threads in a thread block. To use this extra number of
threads, each thread will calculate the influence of all indi-
viduals in one cell of the 9 cells which can influence some-
one for a single individual. So the first thread in a thread
block will calculate the influence of all individuals in the up-
per left neighbor cell on the individual in the first space of the
current center cell. This has the advantage that the first warp
(the first 32 threads of a thread block) all follow the same
code path, the only exception being threads which terminate
immediately, because their corresponding space is not occu-
pied. In our case a thread block consists of 9 warps, each
warp processing the influence of one complete cell serially
for each individual in this cell and parallel for all individuals
which are influenced.

The 2d grid of cells is mapped directly to the grid of thread

(© The Eurographics Association 2011.

Thread Thread Thread
[X]01[0]1 |[D001 | [XI(210]

cell 5,5 cell 6,5 cell 7,5

Thread Threa Thread
Do | I X2101]

cell 5,6 cell cell 7,6

Thread Thread Thread
X121 || bR || X221
cell 5,7 cell 6,7 cell 7,7
Threadblock (6,6)

Figure 2: Thread and Cell indices for thread block 6,6

blocks in CUDA, so each thread block has the index of the
central block which it will be computing influences for. A
thread block only changes the values for the individuals in its
central block, but it needs reading access to the surrounding
8 blocks as well. Each thread in a thread block has a three
dimensional index, the X-Coordinate represents the index of
the space in the central block, so all 9 threads with the X-
Coordinate 0 will calculate the forces for the individual at
space O in the central block. The Y-Coordinate represents
the column index of the 3x3 grid of cells which surround the
central cell. The Z-Coordinate represents the row in this grid
(fig.2). So all 32 threads with Y = 1 and Z = 1 will compute
the influence of the individuals in the central block on each
other. Since warps are always grouped linearly starting with
the X coordinate, we always have all Threads concerning the
influence of a single block in one warp. This warp loops over
all 32 Individuals in this block and computes the influence
of one individual on all 32 individuals in the central block
parallel with one thread each. This results in 9 accumulated
force-vectors for each individual. After computing these 9
vectors, all warps of a thread block need to be synchronized
and write these values into shared memory. A single warp
proceeds to add up these 9 values for each individual and
compute its new velocity and the resulting position. The 8
other warps of the block terminate immediately after their
values are written into shared memory.

Because each cell needs access to all individuals of the
8 neighboring cells, changes to these individuals need to be
synchronized. Especially the case for individuals traversing
to a new cell. Because a number of thread blocks is exe-
cuted in parallel on different multiprocessors the traversal of
a cell could lead to individuals being computed twice, thus
creating the problem of two individuals occupying the same
space, or an individual being not computed at all in an up-
date for a certain cell, so other individuals could pass right
through them. To access this problem a notifying blackboard
architecture is implemented. Each individual which is going
to traverse to a new cell is marked for traversal by setting
its State-Flag to ’traversing’. All computations still consider
this individual as an active part of the cell it still inhabits. At

106 F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA

the same time an empty space in the desired cell is reserved
for the individual. Only one individual can reserve a single
space. After the simulation is updated for all cells, a second
kernel is executed and writes the marked changes through.
So all reserved spaces get occupied by the new individuals
and all individuals which were marked as ’traversing’ are
emptied to free spaces.

This blackboard information is stored directly in the cells.
The second kernel could run a lot faster, if the blackboard
information was collected in one place. The right amount
of threads could be computed beforehand so each thread
would eventually access one blackboard-entry and write the
changes through in the simulation. But because these threads
would still need access to certain cells in the grid, using one
thread for each space in each cell is only a little slower,
since the memory-access to the grid is coalesced with our
method. Another benefit is less synchronization, which is
only needed once using the cell-space itself as a blackboard,
instead of a single static blackboard for all cells. Access to
a single blackboard would have to be synchronized in the
first kernel, which is much more computationally expensive.
Overall the blackboard kernel only uses a fracture of the
overall computation time, so optimization is focused on the
simulation kernel.

Although this two kernel method provides a way to han-
dle marking and actually traversing, it still leaves a prob-
lem of reserving a new empty space in a cell. If two indi-
viduals want to traverse to the same cell and both want to
reserve the same space, synchronization needs to guarantee
only one individual gets the reservation. This is done by us-
ing the AtomicCAS (atomic compare and swap) function of
the CUDA-APL

for (int j=idxx*32; j < (idx+1)%32; ++j)
{
// Check each space in the new cell
if (atomicCAS ((int=x) &people[j]. State ,
FREE, RESERVED) == FREE)
{
// Mark the space to be freed
people[i]. State = LEAVING
i=7j;
// Mark the current person
person. State = RESERVED
cellchanged = true;
break ;

The case of an individual wanting to traverse to a new cell
which is completely full still remains a problem. In this case
the individual is simply stopped from moving to the space of
the new cell by clamping its position to the current cell and
setting its velocity in the corresponding direction to zero.
This can easily lead to an accumulation of individuals want-

ing to traverse to a cell which is completely full. To avoid
this we introduce congestion avoidance in the next step.

4. Introduction of Congestion Avoidance

Following the standard Social Force Model introduced by
Helbing in [HMO95] pedestrians only react to attractive
forces by their goal and other socially interesting targets
and repulsing forces by single pedestrians and hindrances.
The repulsing forcefield created by other pedestrians has
a small radius, which is even smaller in crowded environ-
ments, since the clutter obstructs vision and other possi-
bilities to perceive other pedestrians. This leads to a prob-
lem, if a pedestrian walks into a crowded mass of people.
The high crowd density slows him considerably down, and
he is pushed around by a varying and chaotic number of
forcefields by the pedestrians in his direct neighborhood.
This phenomenon has also been described by Pelechano et
al. [PABO7]. The A-stability problem of the explicit integra-
tor can also be observed under those conditions. Although
this immediate reaction looks natural and believable at first,
the pedestrian is expected to avoid this clutter of people and
search a way to his goal traversing territory with lower crowd
density, so he can move faster.

Following this reasoning and applying it to our cell based
approach a pedestrian needs to recognize cells with high
crowd density and try to avoid these. This could be realized
by implementing an algorithm to recognize these situations
and change the immediate goal of a person. But the seamless
way to integrate it is to represent congestion avoidance by a
repelling force. This force is emitted by neighboring cells,
whose population exceeds a certain limit and gets stronger
until it reaches the maximum of 32 individuals in one cell.
The lower limit at which a cell starts to project this force is at
21 individuals, which was described by [SV99] as the crowd
density at which individuals are starting to get recognized as
a lose crowd instead of single pedestrians. Each individual
can get repelled by the eight neighboring cells which sur-
round its own cell. Since we already have a warp of threads
for each of these cells, each thread of each warp checks if the
crowd density is above the congestion limit and if it is adds
a repulsive force, pointing straight away from the crowded
cell to its force vector.

if ((blockppl > 20 && ppl > 26)
&& (tldx.y!=1 Il tldx.z!=1))
{
force.x —= (tldx.y—1)*(blockppl —20);
force.y —= (tldx.z—1)*(blockppl —20);
}

Measuring the crowd density of a cell only costs minimal
extra calculation time, since each of our cells is already read
by 32 threads in a threadblock. The CUDA API provides
a function __ballot(bool b) which checks a certain condi-
tion for all threads in a warp in a single computation (see

(© The Eurographics Association 2011.

F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA 107

[NVIOS8]). The result of this condition check is returned to
all threads in the warp, which can easily determine the num-
ber of threads fulfilling the condition and hence the number
of active pedestrians in a cell.

Although this implementation creates the desired ef-
fect for situations with small clutters of people, which are
avoided by other individuals, it still lacks another phe-
nomenon observed in tight crowds. If people are in a crowd,
they are not only repelled by groups with even higher den-
sity, but they actively search less crowded space to walk
as it has also been explained by Latif et al. [LW04]. To
simulate this behavior we introduce an additional attractive
force, which is calculated exactly the same way as the con-
gestion avoidance force. But this force draws individuals to
less crowded cells and we call it congestion dispersion. This
force only activates if the current cell of an individual has
at least a certain crowd density. The limit for activation of
this force is 26 people in a cell, which is half way between
the congestion avoidance limit and the maximum number
of people in a cell. This attractive force has the benefit of
not only letting new individuals avoid a congested space, but
also draws pedestrians out of the congested environment so
congestions are dispersed quickly.

5. Results

In this section we discuss visual and performance results of
the CPU and GPU implementation of our crowd simulator
with and without congestion avoidance. Furthermore we will
analyze technical impact factors. One of them is the amount
of thread blocks we use per cell. As a further performance
indicator for the congestion avoidance we analyze the aver-
age effective velocity of the simulated pedestrians. The ef-
fective velocity of a pedestrian is defined by the euclidean
distance between its start and ending position divided by the
time needed for the journey.

Introducing congestion avoidance and crowd dispersion
results in visually smoother simulations with more homoge-
neous crowds. Twitchy and unstable behavior is less likely to
occur. In figure (fig. 3) we show simulation results with and
without congestion avoidance and crowd dispersion. The
first picture shows the simulation of a dense crowd with
randomly placed goals after 1 Minute of simulation time.
Black arrows indicate pedestrians in densely crowded areas
and gray arrows in light crowded areas. Densely crowded ar-
eas are defined as 1.07 persons per m? or more (see table 1).
Although the crowd starts at random positions with random
goals, most of the paths from an individual to its goal cross in
the center of the simulated environment. This leads to many
individuals meeting in the center all on their way to oppos-
ing directions, meaning they have to find a way through or
around the crowd. The social force model without conges-
tion avoidance leads to a huge clutter of people, which get
almost completely stuck and block each other from advanc-
ing. Since we have a constraint of a maximum crowd density,

(© The Eurographics Association 2011.

A %y v
: ™
p
v
v |
Simulation Without Congestion Avoidance
LYY T, o
$4d KR A ANTTR
;‘ ., \’ g - ¥y hJ
v ’ m »re \N% "4 » ‘
< * v A ~rr ¥ 4d»
Nt e .- vy ;?"
Ilfv‘z;‘ Y ad f;‘ y 1
‘V’l\"r“’ ab A0y A\

Simulation With Simple Congestion Avoidanc:e
¥ & L2
YR)

"4
h e (t&f.‘-"“a 3‘7 ~ P4

r x>
IS SRt

4

%< e X <
‘A,tf?‘q & E‘vt’«):}w‘
L V._r‘ 4: ars m‘t“"!;..‘

Simulation With Congestion Avoidance and Dispersion

Figure 3: The results of congestion avoidance and conges-
tion dispersion

and limit the velocity of individuals in accordance to their
cells crowd density, most of the forces cancel each other out
and most individuals trying to traverse the center get stuck
in a growing clutter and integration stability problems occur.

After implementing Congestion Avoidance we get a result
as shown in the second picture, after running the simulation
with equal starting conditions for one minute. Most of the
individuals can traverse the center by evading small dense
groups of opposing individuals. Although these small clut-
ters are avoided by other individuals and hence can’t grow,
they still emerge randomly in the center and a small number
of individuals gets stuck for a while. The random forces from
other individuals passing by result in the breakup of these
clutters by chance, but it sill doesn’t seem very natural, since
an intelligent agent could easily communicate with other in-
dividuals to breakup these clutters as soon as they emerge.
To get this desired behavior Collision Dispersion is imple-

108 F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA

Comparision of Calculation Times for CPU and GPU

-=CPU (Intel E8400 @3.0 Ghz)-+GPU (GTX 460): 1 TB per Cell - GPU (GTX 460): 9 TBs per Cell
300

200

150

Update Time in ms

100
50

0 ———ar
128 256 512 1024 2048 4096 8192 16384 32768 65536

Population

Figure 4: Performance Chart for Random Start, Random
Goal Simulation

mented and most of the individuals evade situations with
high crowd density, so congestions are quickly dispersed.

To analyze the performance of the algorithm we first mea-
sured simulation update times for the CPU and the GPU im-
plementation under varying numbers of crowd participants.
The used CPU implementation is a straight forward n body
particle simulator. The resulting measurements are shown
in figure (fig. 4). As one can see from the graph the rela-
tion between the crowd size and the update time is of the
form ¢ = a-n® where n is the amount of participants in the
crowd. This correlation is expected, since the n-body simu-
lation has a O(n*) complexity. This complexity remains the
same even with a distance cut off in simulation. As the over-
all density increases linearly with the total amount of crowd
participants, the amount of participants in the local vicin-
ity increases also linearly. Therefore the problem remains of
0(n?) complexity.

Displaying the logarithmic charts of the values transform-
ing the formula into ld(t) = ld(a) + b - ld(x) gives us a
linear correlation. Following a regression analysis of this
data, we can approximate the measured values with trend
lines. The coefficient of determination as the variance of our
measured values to the trend line (fig. 5). The values for
128 and 256 people are left out, because caching speeds up
the calculation for small populations. However when ana-
lyzing these values separately, similar results are achieved.
The results are 7(n) = 0.0001 - n'*%° for the straight for-
ward CPU implementation, which approximately fits the ex-
pected O(n?) complexity. Furthermore #(n) = 0.1169 - n%77?
for the Single-Threadblock GPU implementation and ¢(n) =
0.0864 - n*716 for the 9-Threadblock GPU implementation.
This suggests that the optimized GPU implementation not
only calculates the simulation with less than linear complex-
ity, but also a big speedup by full occupancy on the GPU
achieved by multiple thread blocks. One can expect that
once a certain threshold of total crowd participants has been

Linear Regression of UpdateTime and Population Size

500000
tpy () = 0,0001 0%
t (n) =0,1169 n

topuo(n) = 0,0864 7'

5000

500

Update Time in ms

100 1000 10000 100000
Population

Figure 5: Logarithmic Performance Chart with trend lines

Calculation Time for Varying Simulation Area

=n=1024 ~+n=2048 n=4096 +n=8192

100

920

80

g2 70
<

‘s 60
£

F 50
°

5 40
4

= 30

20

10

0

1,000 m? 4,000 m* 16,000 m? 64,000 m* 256,000 m* 1km?

Simulation Area

Figure 6: Performance chart for varying areas and popula-
tion sizes

reached the problem becomes quadratic again. This will be
the case when the parallel computing capability of the used
GPU has been totally exploited.

Although the cell based simulation excels in performance
for increasing crowd sizes, it imposes a new limitation. Since
the algorithm we use is based on a fixed size grid, its overall
dimensions are determined by the size of the area to be sim-
ulated. 9 threadblocks are started for each cell in the whole
simulation. Even though all threadblocks which are started
for empty cells terminate immediately, they still require ac-
cess to the information if this cell is currently empty and
hence access the device memory, which needs some pro-
cessing cycles. What’s more, a huge area with only a few
individuals to simulate still needs a high amount of GPU
processing time, since all the threadblocks are still started
and occupy the multiprocessors, even if only one execution
path is valid, but this is a problem all parallel calculation
approaches face. To measure the performance of the sim-
ulation hence depends on two factors: population size and
simulation area. The performance for varying areas can be
observed in figure (fig. 6)

This chart indicates a good performance for relatively
small densely crowded areas, like pedestrian zones or side-

(© The Eurographics Association 2011.

F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA 109

Table 3: Average Effective Velocity in km/h on 64x64m>

1000 | 2000 | 3000 | 4000 | 5000
Std. Model 203 | 1.79 0* 0* 0*

C. Avoidance | 2.01 1.45 1.14 | 0.80 | 0.62
C. Dispersion | 2.02 | 1.69 | 1.24 | 1.05 | 0.85

walks. These measurements show that the cell based simu-
lation can easily simulate up to 3000 individuals at 60 fps,
if the simulation area doesn’t exceed 5000m in a quadratic
pedestrian zone or up to 1000 individuals in a zone up to
64000m>. These sizes are measurements of fully simulated
quadratic areas, whereas pedestrian zones are usually a com-
plex patchwork of small streets, junctions and areas. This
increases the area which can be simulated in a virtual city,
since only the pedestrian areas need to be mapped by the
simulation grid.

Congestion avoidance has been introduced to make the
simulation without dynamic cell resizing and sorting possi-
ble. Additionally we can also produce more visually pleas-
ing results. Congestion avoidance improves the simulation
by making it more natural looking and less likely to twitch
or come to a halt. One way of estimating the quality of the
congestion avoidance is watching the actual simulation for
a natural looking behavior and steady movement and distri-
bution of the crowd. Since these factors are hard to measure
in numbers, we decided to measure the average effective ve-
locity of the pedestrians in the simulation. This velocity is a
good indicator of how often an individual got stuck on the
way to his goal and how much of a hindrance the crowd
was for each of its members. The simulation was launched
with randomized starting positions and goals. But nonethe-
less several runs of the simulation all even out to the same
average effective velocity, given the same simulation area,
crowd size and congestion avoidance settings. These mea-
surements can be observed in table 3

The velocity entries flagged Ox in Table 3 mark constel-
lations where the crowd density is too high for the unmod-
ified social force model. Most of the pedestrians eventually
get stuck in areas with high trough traffic and can only es-
cape by pure chance, if the forces of passing individuals free
them. But these areas grow over time, so the effective ve-
locity of these stuck individuals approximates zero, since
they never reach their goal. This is already the case for a
lose crowd of 3000 people on 4096m* which get stuck with-
out congestion avoidance. As expected congestion avoid-
ance solves this problem and can achieve an average effec-
tive velocity of 1.14km/h. Crowd Dispersion can even fur-
ther enhance this effect by achieving an average effective ve-
locity of 1.24km/h under the same conditions. While these
additions improve the flow in dense crowds and have now
measurable effect on the simulation of very few individu-
als they actually slow down individuals in a lose crowd of

(© The Eurographics Association 2011.

about 0.5 people per m?. This can be attributed to the fact,
that these individuals take slight detours to evade crowded
spots, which could become congestions. In a lose crowd in-
dividuals can still pass right through these spots, without the
danger of getting stuck, but when the crowd gets more dense,
these spots become real congestions and the pedestrians get
completely stuck.

The overall simulation looks very believable for all crowd
densities, where pedestrians try to avoid congested spots and
clutter before narrow points eagerly waiting to traverse. The
simulation is also very stable and even after long runs or with
gaps in performance the result looks believable and fitting
for an in game simulation of pedestrians.

6. Conclusion and Future Work

In this paper we have shown that the introduction of con-
gestion avoidance into CUDA based crowd simulation leads
to significant advantages. Congestion avoidance provides a
natural mechanism to limit crowd densities. The aspect of
visually pleasing results has been additionally objectified by
measuring the effective speed of crowd participants that gets
significantly increased when those techniques are applied.
The positive impact of congestion avoidance can further be
enhanced by crowd dispersion that is a selective limit to con-
gestion avoidance.

Additionally to obtaining visually pleasing results we get
several stability and performance benefits. The most im-
portant aspect is the performance benefit as a global sort-
ing and assignment of crowd members to worker threads is
avoided. The change of crowd members between simulation
cells can happen asynchronously over a blackboard archi-
tecture. The only point where one has to pay attention is that
a cell does not get overcrowded by people entering asyn-
chronously from different blocks. This is handled elegantly
with a compare and swap (CAS) command.

We have proven that performance improvements and
smoother crowd movement can be obtained by applying con-
gestion avoidance with several measurements.

Experiments have shown that for optimal performance
gain the optimization of data structures used in local mem-
ory for a thread block is important. One has to balance mem-
ory consumption and time needed for compresison and de-
compression. The technical constraints for optimizations on
graphics hardware are complex. Experimentation with dif-
ferent configurations is required for optimal performance.

As future work there are several extension possibilities to
this system. The easiest one should be the inclusion of ob-
stacles. Static obstacles integrate well into the social force
model, as they represent a repulsor to crowd agents. The only
problem with this approach as with most steering behaviors
is that one has to pay attention that crowd members do not
get stuck on local minima.

110 F. Wockenfuss & C. Liirig / Congestion Avoidance in CUDA

The problem of local minima can usually be avoided in a
game context, as coarse granular navigation can often be de-
scribed by a navigation graph that gets edited by the level de-
signer. This paradigm is usually combined with some steer-
ing behavior in todays games. The steering behavior is some-
times based on a social force model. Therefore it would be
a possibility to combine the CUDA force model simulation
with the queing simulation. Introducing a coarse granular
navigation system also provides the possibility to restructure
the uniform grid to accomodate the established link structure
of the coarse granular navigation system. This way memory
consumption can be reduced and additional performance can
be gained.

When one takes a look at the CPU time consumed by
crowd simulators in actual games, one can observe that a
significant portion of those resources is devoted to the ani-
mation system. As we want to simulate many crowd actors
implementing a special low fidelity and low resource hungry
animation system would be an option here. In this case we
do not need a full blown animation tree system. A simplified
system would suffice in this case, that could also be moved
to the GPU for efficient animation computation. Extending
this framework for more complex simulations will be part of
our future research.

References

[BMR*96] BUSCHMANN F., MEUNIER R., ROHNERT H., SOM-
MERLAD P., STAL M.: Pattern-Oriented Software Architecture,
Volume 1: A System of Patterns. Wiley, Chichester, UK, 1996. 2

[DLRO7] D’SouzA R. M., LYSENKO M., RAHMANI K.: Sug-
arScape on steroids: simulating over a million agents at interac-
tive rates. 2

[EA10] EA: Army of two: The 40th day. [PlayStation 3,
XB0X360], 2010. 1

[EFSC09] ERRA U., FROLA B., SCARANO V., COUZIN I.: An
efficient gpu implementation for large scale individual-based
simulation of collective behavior. 2009 International Workshop
on High Performance Computational Systems Biology 0 (2009),
51-58.2,3

[HM95] HELBING D., MOLNAR P.: Social force model for
pedestrian dynamics. Phys. Rev. E 51,5 (May 1995), 4282-4286.
1,3,4,6

[KMKWSO00] KLUPFEL H., MEYER-KONIG T., WAHLE J.,
SCHRECKENBERG M.: Microscopic simulation of evacuation
processes on passenger ships. In Proceedings of the Fourth In-
ternational Conference on Cellular Automata for Research and
Industry: Theoretical and Practical Issues on Cellular Automata
(London, UK, 2000), Springer-Verlag, pp. 63-71. 1

[KmWHI10] KIRK D. B., ME1 W. HWU W.: Programming Mas-
sively Parallel Processors. Elsevier Inc., Burlington, USA, 2010.
3

[KRO2] KRAUSE J., RUXTON G.: Living in Groups. Oxford Uni-
versity Press, USA, 2002. 3

[LKF05] LAkKOBA T. I., KAuP D. J., FINKELSTEIN N. M.:
Modifications of the helbing-molner-farkas-vicsek social force
model for pedestrian evolution. Simulation 81 (May 2005), 339—
352.3

[LW04] LATIF M. S. A., WIDYARTO S.: The crowd simula-
tion for interactive virtual environments. In Proceedings of the
2004 ACM SIGGRAPH international conference on Virtual Re-
ality continuum and its applications in industry (New York, NY,
USA, 2004), VRCAI ’04, ACM, pp. 278-281. 7

[NVIO8] NVIDIA: NVIDIA CUDA Programming Guide
2.0. 2008. (NVIDIA Developer Site) http://developer.
download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_
CUDA_Programming_Guide_2.0.pdf. 1,7

[NVII1] NVIDIA CORPORATION: CUDA C Best Practices
Guide, 4.0 ed. 2701 San Tomas Expressway, Santa Clara 95050,
USA, May 2011. 3

[PABO7] PELECHANO N., ALLBECK J. M., BADLER N. I.: Con-
trolling individual agents in high-density crowd simulation. In
SCA °07: Proceedings of the 2007 ACM SIGGRAPH/Eurograph-
ics symposium on Computer animation (Aire-la-Ville, Switzer-
land, Switzerland, 2007), Eurographics Association, pp. 99—108.
3,6

[RCR09] RICHMOND P., COAKLEY S., ROMANO D. M.: A high
performance agent based modelling framework on graphics card
hardware with CUDA. In AAMAS ’09: Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent
Systems (Richland, SC, 2009), International Foundation for Au-
tonomous Agents and Multiagent Systems, pp. 1125-1126. 2

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A dis-
tributed behavioral model. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 1987), SIGGRAPH ’87, ACM, pp. 25—
34. 1

[Rey06] REYNOLDS C.: Big fast crowds on ps3. In Proceedings
of the 2006 ACM SIGGRAPH symposium on Videogames (New
York, NY, USA, 2006), Sandbox 06, ACM, pp. 113-121. 4

[RMHO5] RUDOMIN I., MILLAN E., HERNANDEZ B.: Fragment
shaders for agent animation using finite state machines. simula-
tion modelling practice and theory. Journal Elsevier 13 (2005),
741-751. 2

[RRO8] RICHMOND P., ROMANO D. M.: Agent Based GPU,
a Real-time 3D Simulation and Interactive Visualisation Frame-
work for Massive Agent Based Modelling on the GPU. 2

[SCE10] SCE: Heavy rain. [PlayStation 3], 2010. 1

[SNO9] STRIPPGEN D., NAGEL K.: Using common graphics
hardware for multi-agent traffic simulation with CUDA. In Pro-
ceedings of the 2nd International Conference on Simulation Tools
and Techniques (Rome, Italy, 2009). 1, 2

[SV99] S.A. VELASTIN R.A. LOTUFO A. M. L. D. F. C.: Esti-
mating crowd density with minkowski fractal dimension. Acous-
tics, Speech, and Signal Processing 6 (March 1999). 4, 6

[Ubi07] UBISOFT: Assasin’s crreed. [PlayStation 3, XBOX360],
2007. 1

(© The Eurographics Association 2011.

http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

