
Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

A Decomposition Approach for Optimizing Large-Scale

Parallel Image Composition on Multi-Core MPP Systems

J. Nonaka and K. Ono†

Computational Science Research Program, RIKEN, Japan

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

In recent years, multi-core processor architecture has emerged as the predominant hardware architecture for high

performance computing (HPC) systems. In addition, computational nodes based on SMP (symmetric multipro-

cessing) and NUMA (non-uniform memory architecture) have become increasingly common. Traditional parallel

image composition algorithms were not primarily designed to take advantage of the combined message passing

and shared address space parallelism provided by modern massively parallel processing (MPP) systems. This

therefore might result in undesirable performance loss. In this study, we have investigated the use of a simple

decomposition approach to take advantage of these different hardware characteristics for optimizing the parallel

image composition process. Performance evaluation was carried out on a multi-core, multi-processor architecture

based T2K Open Supercomputer, and we obtained encouraging results showing the effectiveness of the proposed

approach. This approach also seems promising to tackle the large-scale image composition problem on next-

generation HPC systems where an ever increasing number of processing cores are expected.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel Processing I.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics

1. Introduction

Scientific computing and visualization have played an im-
portant role in computer-aided scientific discovery supported
by HPC resources. The size and complexity of data sets gen-
erated from numerical simulations have increased following
the continuous increase in computational power and network
bandwidth of HPC systems. Currently, several large-scale
high-performance scientific computing projects are being
executed around the globe. To meet the computational re-
source hungry requirements of these scientific applications,
larger and more powerful HPC systems are under develop-
ment. For instance, IBM, NASA (SGI and Intel), and RIKEN
(NEC, Fujitsu, and Hitachi) have announced the building of
supercomputers with tens of petaflops performance.

Recent trends in modern high performance computing
(HPC) system architecture shows an increasing adoption of
multi-core, multi-processing computational nodes [Top]. As
the CPU hardware moves toward multi-core configuration,

† {jorji | keno}@riken.jp

the computational nodes are moving toward SMP (Sym-
metric Multi Processing) and NUMA (Non-Uniform Mem-
ory Access) architectures. In addition, as the node size in-
creases, hierarchical multi-level network topology has be-
come widespread. This therefore results in a heterogeneous
bandwidth performance across the entire system. Currently,
three of the most powerful supercomputers in Japan are
based on T2K Open Supercomputer architecture [T2K], that
is, a NUMA-based multi-core MPP architecture.

The use of HPC systems for visualization has received
increasing attention as a feasible, and sometimes the most
adequate, approach for post-processing. This is because it
can avoid costly and sometimes prohibitive data transfer
of numerical simulation results to graphics capable sys-
tems. [CFN03,TYRG∗06,KLMaYT07,PYRM08,RCM07].
Visualization on the HPC side can also be useful to remove
unnecessary simulation results during a parameter survey,
or to extract only necessary portions of the data in order to
be transferred and visualized on a visualization cluster. In
such case, low and medium resolution images might be suf-
ficient for interactive visualization on the HPC side, since

c© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/071-078

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/071-078

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

Figure 1: Examples of image composition methods for dis-

tributed and shared-memory environments.

Figure 2: Data exchange and decomposition pattern of

Binary-Swap image composition.

high-resolution, high-quality real-time visualization can be
left for the graphics hardware accelerated visualization sys-
tems. Sort-last parallel rendering [MCEF94] emerges as a
natural candidate for visualization on the HPC side, however
the required final image composition process can become a
serious problem since it requires intense data communica-
tion.

Traditional parallel image composition algorithms were
not designed with hybrid programming model in mind. Most
of them are designed for pure distributed or pure shared
memory parallel systems. Although distributed memory ap-
plications can work on systems with full or partial shared
memory address space, a loss in performance might occur
when the hybrid distributed and shared memory program-
ming model is not taken into consideration. In this study, we
have investigated a simple decomposition approach in order
to take advantage of the hybrid programming model.

In order to verify the effectiveness of the proposed de-
composition approach, we executed a performance evalua-
tion on a multi-core MPP system. For this purpose, we used
the Todai Combined Cluster (hereafter called Todai T2K), a
T2K Open Supercomputer installed at University of Tokyo,
Japan. We obtained encouraging results showing that this ap-
proach can effectively optimize large-scale image composi-
tion process on systems with heterogeneous memory archi-
tecture. The decomposition approach also shows promising
to tackle the large-scale image composition on ever increas-
ing number of processing cores verified on recent leading-
edge HPC systems.

The remainder of this paper is organized as follows. In
Section 2, we describe the sort-last image composition with
special attention to the Binary-Swap method. In Section 3,
we present the proposed decomposition approach for opti-
mizing parallel image composition. Experimental results and
discussions are presented in Section 4, and we conclude by
presenting some future works in Section 5.

2. Sort-Last Image Composition

Sort-last image composition method is responsible for the fi-
nal stage of the parallel rendering pipeline. That is, full size
images generated by the rendering process are composited,
or merged, by using alpha blending or z-buffer techniques, in
order to produce the final image. In this study, we focused on
alpha blending which is more complex than z-buffer method
since it requires correct ordering of the entire set of images
during the composition process. Although z-buffer method
does not depend on the composition order, it is worth not-
ing that this approach can directly be applied to this method
without further modifications. Several image composition
algorithms for distributed as well as shared-memory envi-
ronments have been proposed so far, and some examples
are depicted in Figure 1. Most of methods were originally
designed for pure distributed memory environments, and
these are generally grouped into three main categories: Di-
rect Send [Hsu93,Neu93], Parallel Pipeline [LRN96], and
Binary-Tree which includes Binary-Swap [MPHK94].

Figure 1 shows the original Direct Send method based
on image decomposition approach. Parallel Pipeline method
improved the message exchange pattern of Direct Send
method in order to avoid link contention. It also included
a support for image composition on a 2D array of compo-
sition nodes. Current Direct Send derived methods also in-
clude support for 3D distribution of composition nodes. Par-
allel Pipeline method has proven suitable for small size par-
allel systems. In fact, this method has been used on commer-
cial parallel visualization applications such as AVS/Express

PST (Parallel Support Toolkit) [AVS] and CEI Ensight DR

(Distributed Rendering) [CEI]. However, for larger image
composition process, Direct Send and Binary-Swap methods
seem more appropriate. Hardware-based solutions for image
composition have also been proposed so far. It includes de-
vices which were commercially available such as HP Sepia-
2 [LMS∗01] and Mitsubishi Precision MPC [MOM∗01]. In

c© The Eurographics Association 2009.

72

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

addition, hardware-assisted solutions using MPC [NKS∗04]
and NPU (Network Processing Unit) [PMD∗07] has also
been proposed. Although these solutions have proven effec-
tive on small and medium size clusters, in a large-scale HPC
environment the pure software-based image composition be-
comes the most appropriate approach.

Several optimizations both for Direct Send [SML∗03,
SMW∗05, EP07] and Binary-Swap [AP98, YYC01, TIH03,
SKN04, LCY07, YWM08] have been proposed so far. Most
of them have focused on reducing the data size to be trans-
mitted or on minimizing the number of data transmission. In
the specific case of large-scale image composition, Sched-
uled Linear Image Composition method, or SLIC [SML∗03]
for short, emerged as a potential candidate due to its com-
munication cost in the order of O(n.n1/3) thanks to the use
of on-the-fly optimized scheduling. This therefore makes
the number of required message transmission comparable
to Binary-Swap, O(n.log2n), when up to 1024 composition
nodes are involved. However, in the order of tens of thou-
sands of composition nodes, SLIC might require two times
more message transmission. Binary-Swap has been limited
to the use of power of two composition nodes. However,
2- 3 Swap Image Composition [YWM08] has recently been
proposed as a generalization of Binary-Swap to an arbitrary
number of composition nodes. In this method, Binary-Swap
algorithm is still applied when power of two compositing
nodes are available. In this study, we have primarily focused
on Binary-Swap method due to its theoretical high scalabil-
ity potential.

2.1. Binary-Swap Image Composition

Binary-Swap is considered a highly optimized binary-tree
method where the rendering nodes are kept busy as much
as possible during the entire image composition stages.
Binary-Swap is perhaps the most used, and has been widely
researched generating several optimization techniques. As
shown in Figure 2, during the Binary-Swap image com-
position process, the image is recursively divided into two
parts. Half of them is exchanged between pairs of compo-
sition nodes. The other half is then composited with the
received image taking into consideration the correct order-
ing. Although data size required for sending, receiving, and
blending at each stage diminishes as the image composition
stage advances, the communication distance doubles at each
stage. This linear increase in distance has great potential to
compromise the network traffic when the number of compo-
sition nodes (n) increases.

At the end, each node will possess 1/n of the original
image size as the final composited image. These final com-
posited image fragments distributed across the composition
nodes are required to be gathered and reconstructed at the
main composition node (root node). Since each image frag-
ment size is 1/n, thus the amount of data to be gathered will
be equivalent to the total image size. A feasible approach for

this step is to use the available MPI collective functions such
as MPI_Gather. This stage has been ignored for small size
parallel systems since seldom affected the composition per-
formance. However, when the number of nodes increases it
has a great potential to become a serious problem.

There is a vast and rich literature on sort-last image
composition method, and a detailed theoretical performance
analysis for both shared memory [RH00], and distributed
memory [CMF05, Tay02], parallel computing systems can
be found. The total time required for the parallel image com-
position is usually the summation of times required to read
the images (tread), to actually perform the image composi-
tion (tcompose), to collect the composited subimages (tcollect),
and to write the final image (twrite). In pure software ren-
dering context such as those executed at HPC system side,
the time for reading the image (tread) usually can be ignored
since the rendered image is already stored at the main mem-
ory. The time for writing (twrite) the final image represents
the time for effectively flushing to a file or the time required
for displaying onto a display device. The time for composi-
tion (tcompose) and collecting (tcollect) are usually the most
costly and defines the upper bound of achievable perfor-
mance. Thus in this study we focused on these two parame-
ters.

The Binary-Swap composition time (tBS) can be ex-
pressed as shown in Equation 1. In this equation, the term
n corresponds to the number of composition nodes, and
P represents the total number of pixels in the image. The
tcompose term includes the time for sending (tsend), receiving
(trecv) and alpha blending (tblend) at each image composi-
tion stage. Since modern network interconnect supports full
duplex communication, the time for sending and receiving
data between pairs of composition nodes can be substituted
by tcomm (=max(tsend , trecv)). All these components are di-
rectly influenced by the image size as well as the pixel size
of the rendered image. In addition, tcomm is directly influ-
enced by the network bandwidth (B) and latency (L). On the
other hand, tblend is directly influenced by the processor per-
formance.

tBS(n) =

(

log2n

∑
i=1

tcomposei

)

+ tcollectn (1)

=

[

log2n

∑
i=1

(

tcommi + tblendi
)

]

+ tgathern

where

tcommi = max

(

Lsendi +
P
2i

Bsendi

,Lrecvi +
P
2i

Brecvi

)

tblendi =
P
2i

Bblendi

tgather(n) = Lgather(n) +
P

Bgather(n)

c© The Eurographics Association 2009.

73

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

Figure 3:Multi-core MPP system architecture. Figure 4: NUMA node architecture of Todai T2K.

3. Decomposition Approach for Image Composition

Multi-core architecture has emerged as the “standard” build-
ing blocks of modern CPUs. With the introduction of high-
performance multi-core processors, the multi CPU nodes
have become the predominant computational nodes of mod-
ern HPC systems. Figure 3 shows an example of multi-core,
multi-processing hardware architecture used in modern HPC
systems. Usually, computational nodes have SMP or NUMA
based shared-memory, and these are distributed across the
entire system generating different memory access costs. Fig-
ure 4 depicts the NUMA-based node architecture of T2K
Open Supercomputer utilized in this evaluation. Although
memory access time is dependent on the access path, all
these 16 processing cores have access to the entire memory
present in the computational node.

Modern message passing library takes advantage of these
kind of shared memory address space by executing message
exchanging via memory copy in order to avoid data trans-
mission through the network interconnect. Although this
can be beneficial to all distributed memory oriented image
composition methods, it does not take full advantage of the
shared-memory address space parallelism. For instance, dur-
ing the intra-node image composition, the communication
time (tcomm) and the collecting time (tgather) could be mini-
mized, or even eliminated, since all the required data are al-
ready present in the shared-memory. The inter-node commu-
nication through the available network interconnect is gener-
ally several orders of magnitude slower than intra-node data
communication. In addition, it only provides smaller data
communication bandwidth thus a simple decomposition to
intra-node and inter-node image composition might be ex-
tremely beneficial to avoid intense inter-node data commu-
nication. An extension to large-scale inter-node image com-
position is straightforward, and the next session will discuss
some examples of decomposition in detail.

3.1. Shared-Memory Compositing (SMC) +

Binary-Swap (BS)

Shared-Memory Compositing (SMC) [RH00] appears as a
prime candidate for taking advantage of the shared-memory
address space provided by multi-core, multi-processor com-
putational nodes. By taking advantage of the shared-memory
environment, SMC can eliminate the tcomm and tgather re-
quired by some distributed memory oriented methods such
as Binary-Swap. In this case, SMC image composition time
will be equivalent to the time for alpha blending (tblend) a full
image size using k compositing nodes (computational cores),
since each k node will be responsible for c ompositing 1/k
size of the image. However, it should be taken into consider-
ation that in NUMA systems, memory access performance
is affected when accessing data stored at non-local memory.

tSMC+BS(n) = max
Blocks1:m

(

tSMC(k)

)

+ tBS(m)

where

tSMC(k) ≈ tblend (P) (2)

tBS(m) =

[

log2m

∑
j=1

(

tcommj + tblend j

)

]

+ tgather(m)

Considering that the total number of composition nodes
n can be decomposed into m groups of k shared memory
composition nodes, the required image composition time
(tSMC+BS) for the SMC intra-node and BS inter-node im-
age composition will be as shown in Equation 2. After the
optimized intra-node image composition via SMC method,
only a light-weight BS inter-node image composition will
be required. In this case, image composition of only m im-
ages will be necessary. The reduced number of composition
nodes will alleviate potential network contention and facili-
tate collective communication. It is worth noting that the op-
timum performance will be obtained when the images to be
composited are distributed continuously among neighboring

c© The Eurographics Association 2009.

74

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

Figure 5: Combined SMC + BS image composition. Figure 6: Combined BS + BS (or BT) image composition.

Figure 7: Image composition using decomposition ap-

proach.

compositing nodes (computational cores). This is probably
the ordinary situation for the traditional data decomposition
and distribution approach. A performance loss will be in-
evitable when this sequence is broken, for instance, by par-
allel rendering schemes using dynamic load balancing. How-
ever, the performance loss might be balanced by the perfor-
mance gain in the rendering process.

3.2. Binary-Swap (BS) + Binary-Swap (BS) (or

Binary-Tree (BT))

The aforementioned approach can be extended to alleviate
large-scale inter-node image composition problem. Image
composition nodes can be grouped in subgroups to execute
concurrent light-weight inter-node image composition. This
will result in another light-weight image composition on the
following stage. In the specific case of BS, the decomposi-
tion process is facilitated because of its hierarchical binary-
tree configuration. As shown in Figure 6, BS composition

nodes can be grouped into subgroups in order to concur-
rently perform BS composition. Depending on the number
of remaining BS nodes, further decomposition might be ap-
plied. On the other hand, if the number of remaining nodes
is small, BS can be substituted by Binary-Tree in order to
avoid the final image collecting process. Equation 3 shows
the required image composition times when combining BS

with BS (tBS+BS), and BS with BT (tBS+BT). Figure 7 shows
a possible decomposition scheme for large-scale image com-
positon combining SMC, BS, and BT methods.

tBS+BS(n) = max
Blocks1:m

(

tBS(p)

)

+ tBS(m)

tBS+BT (n) = max
Blocks1:m

(

tBS(p)

)

+ tBT (m)

where

tBS(p) =

[

log2m

∑
a=1

(

tcomma + tblenda
)

]

+ tcollect(p)

tBS(m) =

[

log2m

∑
b=1

(

tcommb + tblendb

)

]

+ tcollect(m)

tBT (m) =
log2m

∑
c=1

(

tcommc + tblendc

)

(3)

4. Experimental Results

4.1. Experimental Setup

We implemented a simple parallel image composition ap-
plication using C programming language together with MPI
communication library and OpenMP directives. This appli-
cation generates 32-bit RGBA images, on-the-fly. We used
image sizes of 512x512 and 1024x1024 for performance
evaluation. These image resolutions can be considered suf-
ficient for interactive visualization on the HPC side. For
instance, for feature extraction, data reduction, or data se-
lection during a parameter survey. Therefore, complex vi-

c© The Eurographics Association 2009.

75

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

 10

 20

 30

 40

 50

 60

 70

 2 4 8 16 32 64 128 256 512 1024 2048

T
im

e
 (

m
s
e

c
.)

Number of nodes

Binary-Swap Image Composition

1024x1024 (w/ Gather)
1024x1024 (w/o Gather)

512x512 (w/ Gather)
512x512 (w/o Gather)

Figure 8: BS execution time.

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
e
c
.)

Binary-Swap image composition stages

Binary-Swap (512x512)

t_gather

t_comm

t_blend

Figure 9: BS component execution time.

sual data exploration through high-quality, high-resolution
real-time visualization can be left to a more graphics capa-
ble visualization clusters. We opted for randomly generating
full colored image without any background pixel in order
to force the execution of alpha blending throughout the en-
tire image. This therefore eliminates the performance varia-
tion due to the different ratios of foreground and background
pixels in different images. We did not apply any acceleration
technique, such as bounding box or image compression, in
order to verify the lower bound of the image composition
performance.

The Todai T2K used for performance evaluation is com-
posed of four clusters with a total of 952 (512 + 128 + 256
+ 56) computational nodes. Each node possesses four AMD
Quad Core Opteron 2.3GHz, 32 GB of RAM, and 250 GB of
local HDD. It uses Linux as the Operating System. Hitachi
compiler as well as Intel compiler can be used with message
passing library, based on MPICH-MX, and OpenMP direc-
tives, based on OpenMP 2.0. Although some measurements
were carried out using 256 nodes, or 4096 computational
cores, most of the measurements were carried out using up
to 128 nodes, or 2048 computational cores. Hitachi compiler
was used to generate the binary code and numactl was used
to force processor-memory affinity. In most of the cases,
the processes were mapped continuously on the neighboring
computational cores. We measured the image composition
time using traditional MPI_Wtime function. Ten successive
image composition using different input images (randomly
generated) have been executed for each measurement and
the best measured time was selected.

4.2. BS Composition Performance

Figure 8 shows the measured BS image composition time
using up to 2048 BS composition nodes. We measured the
image composition time with and without applying the final
image collecting process in order to observe the contribution
of the final collecting stage. We could observe that a special
care on this stage is required when optimizing the entire im-

age composition process. Apart of that, we could observe a
considerable performance degradation on both image sizes
when using large number of compositing nodes, that is, in
the order of thousands.

Figure 9 shows the average execution time of the three
main components of BS when compositing 512x512 images
using up to 1024 nodes. As BS stage advances, the image
data size required for sending, receiving, and blending is re-
duced by half. Therefore a proportional reduction on the exe-
cution time such as shown by tblend might be expected. How-
ever, we could verify that the execution time involving net-
work communication does not show such kind of behavior as
the BS composition stage advances. In this graph, tblend and
tcomm should be accumulated as the composition stage ad-
vances, however tgather only shows the required time for ex-
ecuting final image collecting process at each of the stages.

4.3. SMC+BS Composition Performance

Figures 10 and 11 show the measured time of combined
intra-node SMC and inter-node BS image composition us-
ing image sizes of 512x512 and 1024x1024. In these figures,
“SMC(16)-BS” represents the image composition time when
using 16 SMC nodes, that is, 16 threads. On the other hand,
“SMC(4)-BS” represents the time when using 4 SMC nodes.
As expected, similar performance on both image sizes were
obtained when using up to 4 nodes. Although intra-node
BS composition takes advantage of the optimized message
passing using shared-memory, the SMC has always outper-
formed BS during the intra-node image composition. From 8
nodes, SMC(4)-BS starts the BS composition and we can ver-
ify a considerable performance drop compared to SMC(16)-

BS. From 32 nodes, all these three approaches will be exe-
cuting inter-node BS image composition. However, each one
will be in different BS composition stage thus they will be
sending, receiving, and blending different amounts of data.
For instance, when using 32 nodes, BS will have 32 BS nodes
and will be in the fifth BS stage; SMC(4)-BS will have 8 BS

nodes and will be in the third BS stage; and SMC(16)-BS

c© The Eurographics Association 2009.

76

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

 5

 10

 15

 20

 25

 2 4 8 16 32 64 128 256 512 1024 2048

T
im

e
 (

m
s
e

c
.)

Number of nodes

SMC + BS Image Composition (512x512)

BS

SMC(16)+BS

SMC(4)+BS

Figure 10: SMC+BS image composition time for image size

of 512x512.

 10

 20

 30

 40

 50

 60

 70

 2 4 8 16 32 64 128 256 512 1024 2048

T
im

e
 (

m
s
e

c
.)

Number of nodes

SMC + BS Image Composition (1024x1024)

BS

SMC(16)+BS

SMC(4)+BS

Figure 11: SMC+BS image composition time for image size

of 1024x1024.

 20

 40

 60

 80

 100

 120

 1024 2048 4096

T
im

e
 (

m
s
e
c
.)

Number of nodes

BS + BT Image Composition

1024x1024 BS

1024x1024 4BS+BT(4)

1024x1024 2BS+BT(2)

512x512 BS

512x512 4BS+BT(4)

512x512 2BS+BT(2)

Figure 12: BS+BT image composition time, using two and

four subgroups of BS nodes.

will have only 2 BS nodes and will be in the first BS stage.
The other fact is that the number of nodes involved in the
final image gathering will also be different in these three ap-
proaches.

4.4. BS + BS (or BT) Composition Performance

Figure 12 shows the measured time of combined inter-
node BS with BT image composition using image sizes of
512x512 and 1024x1024. In both cases, we divided the en-
tire BS nodes into two and four subgroups. In both cases,
Binary-Tree method was used in the final stage of image
composition. “4BS+BT(4)” represents the measured time
when using four subgroups, and “2BS+BT(2)” represents the
measured time when using two subgroups. We could observe
that both subgroup sizes can effectivelly minimize the per-
formance degradation. However, best results were obtained
when dividing it into two subgroups. For larger number of
composition nodes, different combinations of SMC, BS, and
BT can be considered. However, further investigations are

required in order to obtain the optimum decomposition size
as well as the best combination of image composition meth-
ods.

5. Conclusions

In this paper, we presented a simple decomposition approach
for optimizing large-scale image composition on multi-core
MPP architecture. This architecture, which is becoming in-
creasingly common these days, provides a hybrid memory
environment combining distributed and shared-memory ad-
dress space. We investigated a simple decomposition ap-
proach striving to optimize the entire image composition
process. We applied intra-node SMC image composition to
the shared-memory portion and we obtained considerable
performance increase. This was because SMC does not re-
quire the communication and final collecting processes com-
pared to other distributed memory oriented methods. In ad-
dition, the inter-node image composition, on the distributed
memory portion, takes advantage of the reduction in the
number of images to carry out light-weight image composi-
tion using reduced number of composition nodes. To tackle
the large-scale inter-node image composition problem, we
have investigated the decomposition of BS process. This de-
composition was greatly facilitated because of its hierarchi-
cal tree structure. We could observe that this inter-node de-
composition approach is useful to reduce the performance
degradation when a large number of BS nodes are involved.
The flexibility of this approach enables the use of differ-
ent decomposition schemes as well as the use of different
combinations of image composition methods. However, fur-
ther investigation for calculating the optimum decomposi-
tion sizes as well as for selecting the best combination of
composition methods are required and these are left as our
future works. Future works also include the investigation of
other large-scale image composition methods such asDirect-
Send and 2-3 Swap image composition methods.

c© The Eurographics Association 2009.

77

J. Nonaka & K. Ono / A Decomposition Approach for Large-Scale Image Composition

Acknowledgments

This research was conducted using the T2K Open Super-
computer (Todai Combined Cluster) at the University of
Tokyo under the “HPC Special Project”. This research was
supported by the National Project on “Next-generation Inte-
grated Living Matter Simulation” of Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of Japan.

References

[AP98] AHRENS J., PAINTER J.: Efficient sort-last rendering us-
ing compression-based image compositing. In Proceedings of the

2nd Eurographics Workshop on Parallel Graphics and Visualiza-

tion (1998), pp. 145–151.

[AVS] AVS: Advanced Visual Systems. http://www.avs.com/.

[CEI] CEI: Computational Engineering International.
http://www.ensight.com/.

[CFN03] CHEN L., FUJISHIRO I., NAKAJIMA K.: Optimizing
parallel performance of unstructured volume rendering for the
earth simulator. Parallel Comput. 29, 3 (2003), 355–371.

[CMF05] CAVIN X., MION C., FILBOIS A.: COTS cluster-based
sort-last rendering: Performance evaluation and pipelined imple-
mentation. In Proceedings of the IEEE Visualization Conference

(2005), pp. 111,118.

[EP07] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. In Proceedings of the Eurograph-

ics Symposium on Parallel Graphics and Visualization (2007),
pp. 29–36.

[Hsu93] HSU W. M.: Segmented ray casting for data parallel vol-
ume rendering. In PRS ’93: Proceedings of the 1993 Symposium

on Parallel Rendering (1993), pp. 7–14.

[KLMaYT07] KWAN-LIU MA AND C. W., YU H., TIKHONOVA

A.: In-situ processing and visualization for ultrascale simula-
tions. Journal of Physics: Conference Series (Proceedings of

DOE SciDAC 2007 Conference) 78 (2007), 012043.

[LCY07] LIN C.-F., CHUNG Y.-C., YANG D.-L.: TRLE–an effi-
cient data compression scheme for image composition of volume
rendering on distributed memory multicomputers. J. Supercom-

put. 39, 3 (2007), 321–345.

[LMS∗01] LOMBEYDA S., MOLL L., SHAND M., BREEN D.,
HEIRICH A.: Scalable interactive volume rendering using off-
the-shelf components. In Proceedings of the IEEE 2001 Sym-

posium on Parallel and Large-Data Visualization and Graphics

(2001), pp. 115–121.

[LRN96] LEE T.-Y., RAGHAVENDRA C. S., NICHOLAS J. B.:
Image composition schemes for sort-last polygon rendering on
2D mesh multicomputers. IEEE Transactions on Visualization

and Computer Graphics 2, 3 (1996), 202–217.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer

Graphics and Applications 14, 4 (1994), 23–32.

[MOM∗01] MURAKI S., OGATA M., MA K.-L., KOSHIZUKA

K., KAJIHARA K., LIU X., NAGANO Y., SHIMOKAWA K.:
Next-generation visual supercomputing using PC Clusters with
volume graphics hardware devices. In Proceedings of the 2001

ACM/IEEE Conference on Supercomputing (CDROM) (2001),
pp. 51–51.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH

M. F.: Parallel volume rendering using binary-swap image com-
position. Computer Graphics and Application 14, 4 (1994), 59–
68.

[Neu93] NEUMANN U.: Parallel volume-rendering algorithm per-
formance on mesh-connected multicomputers. In PRS ’93: Pro-

ceedings of the 1993 Symposium on Parallel Rendering (1993),
pp. 97–104.

[NKS∗04] NONAKA J., KUKIMOTO N., SAKAMOTO N.,
HAZAMA H., WATASHIBA Y., LIU X., OGATA M., KANAZAWA

M., KOYAMADA K.: Hybrid hardware-accelerated image com-
position for sort-last parallel rendering on graphics clusters with
commodity image compositor. In VolViS 2004: Proceedings of

the IEEE/SIGGRAPH Symposium on Volume Visualization and

Graphics 2004 (2004), pp. 17–24.

[PMD∗07] PUGMIRE D., MONROE L., DAVENPORT C. C.,
DUBOIS A., DUBOIS D., POOLE S.: NPU-based image com-
positing in a distributed visualization system. IEEE Transactions

on Visualization and Computer Graphics 13, 4 (2007), 798–809.

[PYRM08] PETERKA T., YU H., ROSS R., MA K.-L.: Parallel
volume rendering on the IBM Blue Gene/P. In Proceedings of the

Eurographics/ACM SIGGRAPH Symposium on Parallel Graph-

ics and Visualization (2008).

[RCM07] RAO A. R., CECCHI G., MAGNASCO M.: High perfor-
mance computing environment for multidimensional image anal-
ysis. BMC Cell Biology 8, Suppl 1 (2007), S9.

[RH00] REINHARD E., HANSEN C.: A comparison of parallel
compositing techniques on shared memory architectures. In Pro-

ceedings of the Third Eurographics Workshop on Parallel Graph-

ics and Visualisation (2000), pp. 115–123.

[SKN04] SANO K., KOBAYASHI Y., NAKAMURA T.: Differen-
tial coding scheme for efficient parallel image composition on a
PC cluster system. Parallel Comput. 30, 2 (2004), 285–299.

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J.,
PATCHETT J.: SLIC: Scheduled linear image compositing for
parallel volume rendering. In PVG ’03: Proceedings of the 2003

IEEE Symposium on Parallel and Large-Data Visualization and

Graphics (2003), p. 6.

[SMW∗05] STRENGERT M., MAGALLÓN M., WEISKOPF D.,
GUTHE S., ERTL T.: Large volume visualization of compressed
time-dependent datasets on GPU Clusters. Parallel Comput. 31,
2 (2005), 205–219.

[T2K] T2K: T2K Open Supercomputer Alliance.
http://www.open-supercomputer.org/.

[Tay02] TAY Y. C.: A comparison of pixel complexity in compo-
sition techniques for sort-last rendering. Journal of Parallel and
Distributed Computing 62, 1 (2002), 152 – 171.

[TIH03] TAKEUCHI A., INO F., HAGIHARA K.: An improved
binary-swap compositing for sort-last parallel rendering on dis-
tributed memory multiprocessors. Parallel Comput. 29, 11-12
(2003), 1745–1762.

[Top] TOP500: Top500 supercomputer sites. http://
www.top500.org/.

[TYRG∗06] TU T., YU H., RAMIREZ-GUZMAN L., BIELAK J.,
GHATTAS O., MA K.-L., O’HALLARON D. R.: From mesh
generation to scientific visualization: An end-to-end approach to
parallel supercomputing. In SC ’06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing (2006), p. 91.

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel vol-
ume rendering using 2-3 swap image compositing. In SC ’08:

Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting (2008), pp. 1–11.

[YYC01] YANG D.-L., YU J.-C., CHUNG Y.-C.: Efficient com-
positing methods for the sort-last-sparse parallel volume render-
ing system on distributed memory multicomputers. J. Supercom-
put. 18, 2 (2001), 201–220.

c© The Eurographics Association 2009.

78

