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A B S T R A C T

There are multiple ways to capture and represent the visual world; a draw-
ing, a photograph, or a video are a few examples of visual data that are
very frequent nowadays. Despite the different nature of each domain, there
is a common need to process and edit these data after its production for dif-
ferent purposes. For example, we might want to modify the materials and
the illumination of an object in a photograph, or we might want to explore
a huge collection of non labeled images. The solutions to these problems
mainly depend on the amount of information we have as input: it is not the
same to process a plain set of colored pixels, like a photograph, than a scene
captured with a 3D laser scan and multiple cameras. Thus, the nature of the
visual data will also determine the complexity of the model we can use for
processing.

In this thesis, we focus on creating alternative representations of the vi-
sual content which will facilitate posterior editing and exploration tasks. In
particular, we will focus on conventional visual data like pictures, video se-
quences , and light fields; and we will explore two different aspects or these
data, the appearance in real scenes and the style in artistic scenes.

In the first part of the thesis we focus on the problem of exploring appear-
ance in real scenes, represented by single images, video sequences, and light
fields. We leverage the intrinsic decomposition model, which represents a
scene as the product of two layers: reflectance and shading. The reflectance
layer defines materials and color properties, while the shading contains il-
lumination and geometry information. This problem is highly ill-posed as
for each known value of the scene, we need to recover two unknowns. First,
we present our approach to the problem for single images. Our solution is
based on a two level clustering strategy, first in color space and then in im-
age space, which allows to incorporate global and local constraints, respec-
tively. Second, we extend the problem to the temporal domain, where the
challenge is to preserve temporal consistency and keep memory consump-
tion to a minimum. We present a solution based on an iterative workflow of
reflectance propagation and completion which produces compelling results.
Finally, we further extend the problem in the angular dimension, where our
main goal is to keep the global coherency and leverage structural informa-
tion of the light field volume to make the problem more constrained.

In the second part of the thesis we focus on representing style in artistic
scenes, in particular those created with vector art. We devise a feature-based
representation of style which is learnt via crowdsourcing from the human
perception of style similarity. Thanks to this novel representation we can
successfully perform operations of search by style and create mash-up com-
positions. Additionally, the continuous growing of online datasets, makes it
necessary to develop novel tools for exploration. Thus, we propose an ex-
ploratory interface which combines information about semantic labeling of
the data with the style metric to provide the user with more useful visual-
izations of the content of the dataset.
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R E S U M E N

Hay muchas formas de capturar y representar el mundo que nos rodea, por
ejemplo, un dibujo, una foto, o un video, son unos pocos ejemplos de conte-
nido visual muy frecuente actualmente. A pesar de la diferente naturaleza
de cada dominio, hay una necesidad común de procesar y editar estos datos
después de que son generados. Por ejemplo, podemos querer modificar los
materiales y la iluminación de un objeto en una fotografía, o podemos que-
rer explorar una gran colección de imágenes no etiquetadas. Las soluciones
a estos problemas dependen principalmente de la cantidad de información
que tengamos: no es lo mismo procesar el conjunto de píxeles que podemos
encontrar en una fotografía, que una escena capturada con láseres 3D y múl-
tiples cámaras. Por tanto, la naturaleza de los datos también determinará la
complejidad del que modelo que podamos usar para su procesamiento.

En esta tesis nos centraremos en crear representaciones alternativas del
contenido visual que facilitarán su posterior edición y exploración. En par-
ticular, no centraremos en datos que se pueden capturar con dispositivos
convencionales, como puede ser dibujos, fotos, secuencias de video, y cam-
pos de luces o light-fields. Exploraremos dos aspectos diferentes de estos
datos: la apariencia en escenas reales y el estilo en escenas artísticas.

En la primera parte de la tesis nos centraremos en explorar la apariencia
en escenas reales, representadas por imágenes, secuencias de video, y light-
fields. Utilizaremos el modelo de descomposición intrínseco, que representa
una escena como el producto de dos capas: la reflectancia y el sombreado.
La capa de reflectancia define las propiedades y color de los materiales;
mientras que la capa de sombreado contiene información de iluminación
y geometría. Este problema se dice que está mal formulado o ill-posed ya
que para cada valor que conocemos de la entrada, tenemos que resolver
dos incógnitas. Primero, presentamos nuestra solución tomando imágenes
como entrada. Nuestra solución se basa en segmentación en dos niveles,
primero en espacio de color y luego en espacio de imagen, lo cual nos per-
mite incorporar restricciones globales y locales, respectivamente. Segundo,
extendemos el problema al dominio temporal, donde el problema principal
radica en mantener la consistencia temporal y el consumo de memoria al
mínimo. Nuestra solución se basa en un flujo iterativo donde la capa de re-
flectancia es propagada desde el primer fotograma al último manteniendo
la coherencia. Finalmente, extendemos el problema al domino angular, don-
de nuestro principal objetivo será matener la coherencia global y aprovechar
la información presente en este nuevo tipo de dato, los light-fields.

En la segunda parte de la tesis nos centraremos en representar el estilo en
escenas artísticas, en particular aquellas creadas con arte vectorial. Obtene-
mos una representación basada en características de bajo nivel que apren-
demos vía crowdsourcing a través de nuestra percepción del estilo. Gracias
a esta nueva representación podemos realizar operaciones de búsqueda por
estilo y crear composiciones. Por otra parte, el continuo crecimiento de bases
de datos online, hacen necesario desarrollar nuevas técnicas para su explo-
ración. Nosotros proponemos una interfaz exploratoria que combina etique-
tado semántico de los datos con nuestra métrica de estilo para proporcionar
al usuario visualizaciones más útiles del contenido de estas colecciones.
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Part I

I N T R O D U C T I O N & O V E RV I E W





1I N T R O D U C T I O N

Capturing and representing the world has been subject of attention through-
out the human history: from cave paintings to modern photography, we
have found many ways to communicate our perception of the world under
different degrees of realism. For example (see Figure 1.1), a stylized draw-
ing is as an abstracted representation of the reality, where painter skills and
emotions are projected onto the canvas at the time of the creation. On the
contrary, a photograph usually captures a more objective reality, result of
the complex interactions between light, matter and geometry that are inte-
grated into the camera sensor.

Figure 1.1: Visual representations of a scene. Left, illustration - The Great Wave Off Kana-
gawa by Katsushika Hokusai. Right, photograph of sea wave by Kenji Croman c©.

The need to process and edit these visual data after their production is
constantly growing, much like the amount of available data. Thus, computer
graphics and computer vision fields have been investing a lot of time and
resources to develop new tools to manage any kind of visual content with
a variety of purposes. For instance, image and video segmentation [45, 64],
material editing [89, 158], 3D reconstruction [139], stylization [58], seman-
tic labeling [26], or image retrieval [5] to name a few. The solutions to these
problems mainly depend on the amount of information we have as input, as
once the content is captured or digitized and processed on a computer, most
of the real world information that was available at the instant of the capture
is posteriorly missing, making the problem highly under-constrained if the
input is just a single image. For example, relighting a scene [117, 116] re-
quires knowing the materials of the objects, the position of the light sources,
and the geometry. This problem commonly known as inverse rendering [145]
can be solved, for example, recovering geometry by taking multiple images
of the scene [52, 166] and capturing the illumination with a light probe [15].
However, if our input is just a single image, the task becomes extremely
difficult requiring a lot of manual work [139]. Another example of a com-
mon problem that is becoming more difficult with the increasing amount
of available visual data is the need to manage and process huge datasets,
which are usually not labeled or classified. Thus, it would be beneficial to
find automatic ways to label [95, 71] and explore this data efficiently.

In this thesis, we focus on creating alternative representations of the vi-
sual content which will facilitate posterior editing and exploration tasks.
In particular, for real scenes, represented by an image, a video, or a light

3



4 introduction

field, we represent their appearance as a combination of two components: re-
flectance and shading. For artistic scenes, such as illustrations, we provide a
feature-based approach to style, which will allow us to perform style-based
exploration and image retrieval. In the remainder of this chapter, we define
these two aspects separately, overview the types of visual content we deal
with within the context of these two aspects, and discuss the main chal-
lenges. By the end of the chapter we summarize the general contributions
of this thesis.

1.1 appearance in real scenes

The appearance of an object in an image encodes fundamental information
about that object and its environment. It helps to recognize real-world ob-
jects and convey information about them. For example, the illumination can
tell us whether the scene is indoors or outdoors; or the reflectance properties
can reveal information about the material that make up the object.

Illumination in a scene can be captured in several ways, being the most
common one the use of a light probe which captures the environment il-
lumination with a 360

o HDR panoramic image [34, 35, 148] (Figure 1.2a).
For instance, this set up has been used to estimate directions of multiple
light sources in a scene [195, 75]. The mathematical models for represent-
ing material appearance can be of diverse nature- ranging from analytical
functions to tables- or capture different types of materials. For example,
BRDF representations are suitable for homogenous materials [136]; while
BTFs or spatially-varying BRDFs are suitable for heterogeneuous appear-
ances [32, 82]. There is not a unified representation of appearance and
the success of these models is usually determined by: 1) the nature of
the modeled material or illumination, and 2) the complexity of the cap-
ture system, since we usually need complex set ups with expensive equip-
ment [128, 46, 131] (Figure 1.2b). Thus, our goal is to get rid of the equipment
requirements and acquire a suitable approximation of the appearance of an
objet in a scene from conventional input, like photographs, video and light
fields. In such cases, the input data -plain colored pixels- is not suitable to
fit complex representations of appearance so we leverage a simpler model,
named Intrinsic Scene Decomposition which is described next.

(a) Light probe (b) Microscopic acquisition setup [131]

Figure 1.2: Example of techniques used to capture illumination (a) and reflectance appear-
ance (b).

intrinsic image decomposition Barrow and Tenenbaum [10] pro-
posed a model that describes the appearance of an object in an image as a
combination of several layers: reflectance, illumination and orientation. This
choice was inspired by our ability to identify these aspects regardless of
familiarity with the scene or existing illumination. They called the model in-
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trinsic scene characteristics. Later, this problem was simplified with the name
of intrinsic image decomposition to obtaining just the reflectance R and
shading S layers from a single image I:

I = R× S (1.1)

Figure 1.3 shows an example of decomposition for a synthetic scene where
an object is illuminated by a white light source. Each pixel of the input im-
age results from the combination of these two components: the reflectance,
which describes the material properties and is invariant to illumination, and
the shading, which contains information about the shading and shadows,
and depends on the geometry and the position of the light source.

(a) Input image I (b) Reflectance R (c) Shading S

Figure 1.3: Synthetic scene which illustrates the intrinsic decomposition. Image (a) is the
result of the product of the reflectance layer (b) and the illumination in (c).

Obtaining this decomposition is a highly ill-posed problem, as for each
known value of the input image, we have two unknowns. Therefore, to make
the problem tractable it is convenient to impose additional constraints. First,
it is assumed that materials are lambertian, that is, materials whose visual
appearance is invariant to the position of the viewer, thus ignoring effects
like specularities. Second, it is assumed that images are white balanced,
and illuminated with a monochromatic light source. Finally, it is not taken
into account shading effects which are due to interreflections. Despite these
assumptions, we will see later that the shown formulation (Equation1.1) is
able to deal with a huge number of scenes present in the natural world. In
this thesis we present a solution based on clustering, which relies on color
chromaticity values to find regions of the image with constant reflectance.

intrinsic video decomposition So far, we have only focused on the
problematic of single and static images. Now, we introduce the problem of
intrinsic video decomposition. With the same assumptions we presented for
single images, we incorporate the temporal dimension, and the restriction of
the temporal coherency. In principle, the problem is the same, since a video
is a just a sequence of single images -or frames. However, naïvely apply-
ing a single image intrinsic algorithm independently to each frame yields
to a temporal unstable solution, visible in the form of flickering artifacts.
Thus, we seek a solution which maintains smooth transitions between the
frames. In this thesis, we propose an approach based on reflectance propaga-
tion. Starting from a intrinsic decomposition of the first frame, we propagate
reflectance values to subsequent frames following Bayesian probabilistic in-
ference. At every point, the quality of the decomposition and the transitions
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are guaranteed by confidence intervals, and those unreliable values are com-
pleted with local intrinsic decompositions.

intrinsic light field decomposition Light field photography has
recently become very popular with the emergence of consumer cameras
(LytroTM, RaytrixTM, PCamTM), professionals (Lytro CinemaTM) and the flour-
ishing of virtual reality. Light field imaging outperforms traditional systems
in that it captures the same scene from slightly different points of view.
These variations, which are done in the angular domain, allow sophisticated
post-capture effects [80], such as view-panning [107, 61], refocus [78, 134],
super-resolution [118] or 3D reconstruction [90]. The problem of intrinsic
light field decomposition inherits the previous problems we have found for
single images and video sequences, with the additional difficulty of having
to maintain angular coherency. Contrarily to video based solutions, which
keep coherency in just one dimension (the temporal domain), 4D light fields
need to be consistent in all angular dimensions. This makes the problem
highly challenging since a global optimization is unfeasible. Our solution
explores the structure and high dimensionality of the light field data to
obtain better cues about reflectance and shading variations which are not
available in single image or video sequences.

applications As we have previously discussed, the benefits of obtain-
ing this decomposition are multiple and particular examples will be shown
in detail in the corresponding chapters. In summary, having the intrinsic
components is useful for any task that would require some structural knowl-
edge about the scene. For example, once we have the intrinsic layers, chang-
ing the materials of a scene is simplified to changing the reflectance layer;
segmentation is improved if the reflectance layer is used instead of the orig-
inal input image; or stylization and relighting can be done more accurately
by optimizing the shading and reflectance components separately.

1.2 style in artistic scenes

The notion of style has multiple definitions depending on the context [19,
184, 39]. In paintings, the term style can be applied to describe common
features of works which belong to a certain a period or to the particular work
of an artist. Also, the concept of style can vary with culture and perception.
Contrarily to appearance which, as we have seen before, follows physical
laws, style is a subjective concept for which there is no general agreement,
and thus, each domain should be studied separately. Recent works assume
that the style can be identified by combining several elements that share it,
and removed to obtain different levels of abstraction, e.g., for faces [14, 193],
shape collections [192], buildings [132] or curves [109].

Illustration art or vector art has become quite popular in the digital do-
main. It is very common to find online libraries containing hundreds of
thousands of pieces of vector art designed to be copied into documents or
illustrations. The style of these collections ranges from simple sketches to
comic-like styles with complex effects. While there is a lot of work on non
photorealistic rendering to simulate styles [167, 60, 40], little attention has
been paid to understand it. A very interesting categorization was made by
Scott McCloud [124] in his seminal books about comics, where he proposed
a triangle-based representation where images where classified among three
corners: realistic, simplified and stylized. However, he did not provide a
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concrete definition of style as, as mentioned before, it is fundamentally dif-
ficult.

Figure 1.4: Same object depicted in four different styles [40].

On the other hand, the amount of data available online has promoted the
creation of new tools that could handle this data from a user perspective.
For example, the problem of searching particular objects within a dataset of
non-labeled images used to be very difficult. However, nowadays, the use
of deep neural networks [95, 169] for this task, has been a great success.
A related problem is image retrieval from sketches [153], where the user
provides a simple sketch of the object and the goal is to retrieve images that
contain it without providing a particular label or name. In both cases, we
need some sort of measure to compare between concepts and images, and
to compare between images directly. Due to the high dimensionality of the
domain, solutions to these problems involve machine learning techniques,
where supervised approaches prevail. Thus, this kind of techniques rely on
training a non-linear model with huge amounts of input-output data, where
the more successful models are often uncomprehensible. So far, most of the
efforts have focused on semantic labeling and search, and there are just a
few works [88] which have explored the concept of style in this way.

In this thesis, we focus on the analysis of style in illustration; we provide
a metric which measures the similarity in style between two pieces of vector
art. The metric is based on pixel-wise features and is learnt from human
perception of style since there is no labeled dataset which provides this kind
of information. Thanks to the metric we show several applications where
this metric is useful such as style-based image retrieval, mash-up generation
and style-based exploration.

1.3 goal & overview

The main goal of this thesis is to develop new algorithms to find suitable
representations of appearance from real scenes and style from illustration. The
purpose is to obtain alternative representations of the visual content which
will facilitate editing operations for the case of appearance, and search and
exploration for the case of style. Both problems share the inherent difficulty
of dealing with raw data as is the case of pictures, images, video and light
fields, and no additional sources of information were used at the time of the
capture or the creation. That makes these problems particularly challenge re-
quiring to impose external assumptions: Appearance can be defined by the
physical laws that govern material and illumination interactions; while style
is a subjective property for which we need to leverage human perception via
crowdsourcing strategies.

Figure 1.5 provides an overview of the main structure of the thesis. This
thesis is divided in two main parts, one for each aspect of study. Each type of
visual content will be addressed separately per chapter, while applications
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Ch. 4
Image
Ch. 2

Video
Ch. 3

Illustration
Ch. 5 & 6

APPEARANCE
ReflectanceShading Color Stroke Shading Texture

Segmentation

Re-lightingMaterial Editing

Stylization

Compositing Image Retrieval

Style-Based Exploration

STYLE

II. REAL SCENES III. ARTISTIC SCENES

Light Field

Figure 1.5: Overview of the structure of the thesis.

(bottom row of Figure 1.5) will be mentioned crosswise. In summary, the
structure is the following:

• Part II deals with the problem of representing appearance in heteroge-
nous data sources. In particular, we define appearance as the prod-
uct of reflectance and shading, problem commonly known as intrinsic
scene decomposition. We tackle the same problem for three types of data
sources, starting from lower to higher amount of input data: images
in Chapter 2, video sequences in Chapter 3 and light fields in Chap-
ter 4. Applications that enable this decomposition like segmentation,
re-texturing or relighting will be shown within the context of each
domain.

• Part III tackles the problem of style in illustration data. In Chapter 5

we provide a definition of style based on pixel-based features and a
similarity metric learned from humans perception. In Chapter 6, we
extend the study of style to a labeled data set, and present an interface
which allows style-based exploration.

This work has led to a number of publications detailed below. Of course,
they have been done in collaboration with other colleagues; while my level
of contribution in each can be inferred from my position in the authors
list, at the beginning of each chapter I will describe and contextualize my
contribution when needed.

1.4 contributions and measurable results

1.4.1 Publications

Most of the work presented in this thesis has been already published, in par-
ticular in four journals indexed in JCR, including two papers in ACM Trans-
actions on Graphics and presented at SIGGRAPH, and one peer-reviewed
international conference:

• Intrinsic Images by Clustering (Chapter 2, Part II)
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The main work on intrinsic image decomposition was accepted in Eu-
rographics Symposium on Rendering (EGSR) 2012, and published in
Computer Graphics Forum [57]. This journal has an impact factor of
1.542, and its position in the JCR index is 17th out of 106 (Q1) in the
category Computer Science, Software Engineering (data from 2015).

Partial results were published in Ibero-American Symposium in Com-
puter Graphics (SIACG) 2011 [56].

• Intrinsic Video and Applications (Chapter 3, Part II)

This work was accepted at SIGGRAPH 2014, and published in ACM
Transactions on Graphics [191]. This journal has an impact factor of
4.218, and its position in the JCR index is 1st out of 106 (Q1) in the
category Computer Science, Software Engineering (data from 2015).

• Intrinsic Light Fields (Chapter 4, Part II)

This work has been published as technical report in arXiv [55]

• A Similarity Measure for Illustration Style (Chapter 5, Part III)

This work was accepted at SIGGRAPH 2014, and published in ACM
Transactions on Graphics [53]. This journal has an impact factor of
4.218, and its position in the JCR index is 1st out of 106 (Q1) in the
category Computer Science, Software Engineering (data from 2015).

• Style-Based Exploration of Illustration Datasets (Chapter 6, Part III)

This work was published in Multimedia Tools and Applications 2016 [54].
This journal has an impact factor of 1.331, and its position in the JCR
index is 31st out of 106 (Q2) in the category Computer Science, Soft-
ware Engineering (data from 2015).

In addition to these previous publications, during my PhD I have collab-
orated in other research projects directly or indirectly related to the topic of
this thesis:

• Icon Set Selection via Human Computation.

In this work, lead by Lasse Laursen, we propose a method based on
crowdsourcing which is able to select an optimal subset of icons ac-
cording to two properties of icon design: comprehensibility and iden-
tifiability. It has been published as short paper in Pacific Graphics Con-
ference [44], and invited to Springer Journal Computational Visual Me-
dia.

• Convolutional Sparse Coding for capturing High Speed Video Con-
tent.

In this work, lead by Ana Serrano, we use sparse coding strategies
to reconstruct a high speed video from a single shot. We guarantee
smoothness in the temporal dimension by enforcing continuity in the
first-order derivatives of the sparse coefficients. The initial work was
published at CEIG 2014 [157]. It is currently under review at Computer
Graphics Forum [156].

• Depth from a Single Image through User Interaction.

In this work, lead by M. Angeles Lopez, we develop and algorithm
which computes depth from a single image aided by human inter-
action. The work was presented in the XXIV Spanish Conference of
Computer Graphics [115].
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• Multiple Light Source Estimation from a Single Image.

In this work, lead by Jorge Lopez-Moreno, we designed an algorithm
to estimate the position of lights in a single image. It was published in
Computer Graphics Forum [116], and presented in EGSR 2014.

1.4.2 Awards

We include here a list of awards and fellowships received throughout this
thesis, that have allowed the realization of the work here presented:

• FPI Grant from the Regional Government, Diputacion General de Aragon
(4-year PhD grant).

• Adobe Systems funding to extend the collaborative work after each of
the research internships

Additionally, some projects described in this thesis have received different
awards or recognitions:

• Our work A Similarity Measure for Illustration Style was invited to
the XXIV Spanish Conference in Computer Graphics (CEIG 2014).

1.4.3 Research Stays and Visits

Two research stays, totaling 6 months, were carried out during this PhD in
two different locations:

• June 2011 – August 2011 (three months): Research Intern at the Ad-
vanced Technology Labs at Adobe Systems (San Jose, California, USA).
Supervisor: Dr. Sunil Hadap. Worked on monocular depth estimation
from a single image.

• June 2013 – August 2013 (three months): Research Intern at the Cre-
ative Technology Labs at Adobe Systems (Seattle, Washingtong, USA).
Supervisor: Dr. Aseem Agarwala and Aaron Hertzmann. Publication [53]
result of this collaboration.

1.4.4 Supervised Students

During the development of this thesis I have supervised the Graduate Thesis
of four students:

• Ongoing: Isabel Gaspar. Computational Icon Design. Expected gradu-
ation date: September 2016.

• Ongoing: Manuel Lagunas. Deep Learning for Art and Illustration:
September 2016. Expected graduation date: September 2016.

• Daniel Osanz (Industrial Design, 2013). Design of an application for
style-based image retrieval.

• Fernando Martin (Computer Engineering, 2012). Low Cost Decompo-
sition of Direct and Global Illumination in Real Scenes.
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1.4.5 Research Projects and Industry Collaborations

During my PhD studies I have participated in the following research projects
and collaborated with the industry:

• SkinAnalytics: Since June 2016, I am external consultant of the startup
SkinAnalytics, which is based in London. The aim of the company is
to early predict melanoma cancer from mole pictures and historical
data of the patient.

• VERVE: Vanquishing fear and apathy through e-inclusion: personalised
and populated realistic virtual environments for clinical, home and
mobile platforms. European Commission (FP7-ICT-2011-7). Grant no.:
288914. PI (in Spain): Diego Gutierrez

• LIGHTSLICE: Capture, analysis and applications of the multidimen-
sional light transport (application to medical imaging). Ministerio Es-
pañol de Economía y Competitividad. PI: Diego Gutierrez

• MIMESIS: Low cost techniques for the acquisition of material appear-
ance models. Ministerio Español de Ciencia y Educación. (TIN2010-
21543). PI: Diego Gutierrez





Part II

A P P E A R A N C E I N R E A L S C E N E S

In this part we tackle the problem of appearance capture formu-
lated as the decomposition of a scene into its intrinsic compo-
nents. We start presenting the problem for single images, and
describing our solution based on color clustering. Then, we ex-
tend the problem to video sequences, including the temporal di-
mension in the formulation and present our solution based on
reflectance propagation. Finally, we further extend the problem
to light field volumes, where the total number of dimension is
four, due to the inclusion of the angular dimension.





2I N T R I N S I C I M A G E D E C O M P O S I T I O N

In this chapter we present the problem of intrinsic image decomposition,
which is defined as the separation of an image into its intrinsic shading and
reflectance components. We present a novel algorithm that requires no user
strokes and works on a single image. Based on simple assumptions about its
reflectance and luminance, we first find clusters of similar reflectance in the
image, and build a linear system describing the connections and relations
between them. Our assumptions are less restrictive than widely-adopted
Retinex-based approaches, and can be further relaxed in conflicting situa-
tions. The resulting system is robust even in the presence of areas where
our assumptions do not hold. We show a wide variety of results, including
natural images, objects from the MIT dataset and texture images, along with
several applications, proving the versatility of our method.

This work is published in Computer Graphics Forum and presented at Eu-
rographics Symposium on Rendering (EGSR) 2012. Preliminary results about
reflectance clustering were presented at the Ibero-American Symposium in
Computer Graphics (SIACG) 2011.

E. Garces, D. Gutierrez & J. Lopez-Moreno
Graph-Based Reflectance Segmentation

SIACG 2011

E. Garces, A. Munoz, J. Lopez-Moreno & D. Gutierrez
Intrinsic Images by Clustering

Computer Graphics Forum, Vol.31 (4), EGSR 2012

2.1 introduction

The problem of separating an input image into its intrinsic shading and
reflectance components [10] is extremely ill-posed. However, many applica-
tions would benefit from the disambiguation of a pixel value into illumina-
tion and albedo, such as image relighting or material editing. This problem
is usually formulated as the input image I being a per-pixel product of
its unknown intrinsic shading S and reflectance R, so the space of mathe-
matically valid solutions is in fact infinite. Existing methods therefore need
to rely on additional sources of information, such as making reasonable
assumptions about the characteristics of the intrinsic components, having
multiple images under different illuminations or asking the user to add
image-specific input.

In this chapter, we describe a new algorithm that works on a single off-
the-shelf image and requires no user strokes. We do make some reason-
able assumptions, in the form of flexible constraints. We formulate the de-
composition of an input image into its shading and reflectance compo-
nents as a linear system that exploits relations between clusters of sim-
ilar reflectance. Classic Retinex approaches assume that i) reflectance is
piecewise constant, and ii) shading is spatially smooth (C0 and C1 conti-
nuity) [102, 74]. Based on this, a number of authors have proposed different
approaches [51, 91, 163, 59]. In this work we first find clusters of similar re-

15



16 intrinsic image decomposition

flectance in the image following the observation that changes in chromaticity
usually correspond to changes in reflectance.

We then relax the second Retinex assumption that shading is spatially
smooth in two ways: we assume only C0 continuity on the shading, and
only at the boundaries between clusters (as opposed to the whole image), and
describe this as a set of linear equations. Our linear system is completed
by additionally preserving reflectance between clusters even if they are not
contiguous, and adding a regularization term to make it more stable.

Our main contribution is a novel algorithm for intrinsic images decompo-
sition which deals with a wider range of scenarios than traditional Retinex-
based algorithms, yields better decompositions than existing automatic meth-
ods from single images, and offers an attractive trade-off between qual-
ity and ease of use, compared with techniques requiring either significant
user input or multiple input images. We present an exhaustive comparison
against most existing techniques, which we are public along to our source
code. Last, we show compelling example applications of retexturing, relight-
ing and material editing based on our results.

Like all existing methods that deal with this ill-posed problem, our work
is not free of limitations: Our C0 assumption is a simplification that breaks
for some occlusion boundaries and sharp edges, which translate into inaccu-
rate equations in the system. However, given our robust formulation which
usually translates into a few thousand equations, these inaccurate equations
represent a very small percentage, and our method generally handles these
situations well.

2.2 related work

automatic Some automatic methods rely on reasonable assumptions
about the nature of these two terms, or the correlation between different
characteristics of the image. Horn [74] presents a method to obtain lightness
from black and white images, using pixel intensity information and assum-
ing that lightness corresponds to reflectance. He further assumes that the
reflectance remains locally constant while illumination varies smoothly (as
described by the Retinex theory [102]). Funt et al. [51] extend this approach
to color images, and propose the analysis of chromaticity variations in order
to identify the boundaries of different reflectance areas. They enforce inte-
grability of the shading at these boundaries and propagate their values to
their neighboring pixels by diffusion, solving the subsequent Poisson equa-
tion with a Fourier transformation. This was later extended by Shen et al.
[163] with global texture constraints, forcing distant pixels with the same
texture to have the same reflectance. This constraint greatly improves the
performance of the standard Retinex method, although it relies on objects
with repeated texture patterns and may yield posterization artifacts due to
the wrong clustering of distant pixels. The related method by Finlayson
and colleagues [62] is mainly oriented to remove shadows by minimizing
entropy, but does not to recover intrinsic images. The work by Jiang et al.
[83] assumes that correlated changes in mean luminance and luminance am-
plitude indicate illumination changes. By introducing a novel feature, local
luminance amplitude, the authors obtain good results, although limited to im-
ages of relatively flat surfaces and objects from the recently published MIT
dataset for intrinsic image decomposition [63]. This actually simplifies the
problem since such objects are treated in isolation, avoiding the problem
of occlusion boundaries at the outlines. Recently, Gehler and colleagues[59]
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proposed a probabilistic model, based on a gradient consistency term and a
reflectance prior, which assumes that reflectance values belong to a sparse
set of basis colors. The problem is formulated as an optimization of the
proposed energy function. The method yields good results, although again
limited to isolated objects from the MIT dataset. Our linear system formu-
lation allows for much faster computational times (up to a thousand times
faster), and generalizes well over a wider range of images (including both
natural and texture images).

user intervention Another set of techniques rely on assumptions and
user intervention. Bousseau and colleagues [22] simplify the problem by
assuming that local reflectance variations lie in a 2D plane in RGB space
not containing black, which may not be compatible with certain texture or
grayscale images. This assumption is also used in the work by Shen and
Yeo [164], who further consider that neighboring pixels in a local window
with similar intensity have also similar reflectance. In addition, Bousseau’s
method requires that the user define constraints over the image by means of
three different types of strokes: constant-reflectance, constant-illumination
and fixed-illumination. Their method produces very compelling results, al-
though creating the appropriate strokes for each particular image (from 15

to 81 for the figures in the paper) may be far from intuitive for unskilled
users. The same set of user tools is employed in the recent work by Shen
and colleagues [162], who use an optimization approach that further as-
sumes that neighboring pixels with similar intensity have similar reflectance
values. In the context of material editing, Dong et al. [37] assume input im-
ages of globally flat surfaces with small normal perturbations and lit with
a directional light, and require user strokes for optimal decompositions. In
contrast, our method is almost fully automatic (usually a single parameter
is needed) and requires no user strokes.

multiple images Last, another strategy consists of incorporating ad-
ditional information, either from other sources or from multiple images.
Tappen et al. [173] classify the derivatives of the image as produced ei-
ther by illumination or albedo. Ten classifiers are obtained from training
Adaboost [47] with a set of computer generated images containing only re-
flectance or illumination components. They further refine their approach
by introducing a new training set of real-world images and including a
method to weigh the response to these classifiers [174]. Despite these ad-
vanced techniques, several configurations of illumination and reflectance
remain very difficult to decompose and additional techniques like Markov
Random Fields (MRF) and Belief Propagation (BP) are necessary in order
to yield good solutions. Weiss [182] uses a large sequence of images of the
same scene (up to 64 images, and no less than 35, taken in controlled set-
tings), where the reflectance remains constant and illumination varies in
time. Also using multiple images, Laffont and colleagues [99] leverage multi
view stereo techniques to approximately reconstruct a point cloud represen-
tation of the scene. After some user intervention, illumination information
computed on that point cloud is propagated in the image. Their method
decomposes the illumination layer into three components: sun, sky and in-
direct light. Last, the concept of intrinsic colorization is introduced by Liu et
al. [113]; to colorize a grayscale image, their method recovers the needed re-
flectance component from multiple images obtained from the web, in order
to transfer color from there. All these techniques require multiple images
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Figure 2.1: Intrinsic shading estimation when both the shading and the reflectance present
a discontinuity at the same point (as in some occlusion boundaries). Left column: Three
different input luminance signals. Middle columns: Ground truth intrinsic signals. All three
input signals are the result of multiplying the same reflectance with three different shading
signals, presenting different continuity characteristics. Right columns: Results assuming
both C0 and C1 continuity on the shading, compared to C0 only (our method). Notice how
our algorithm leads to an accurate result in two of the three cases, while yielding less error
in the most unfavorable case.

as input, sometimes captured under controlled settings, while our approach
simply takes an off-the-shelf single image.

2.3 algorithm

The desired decomposition consists of separating an image into two compo-
nents (images): one representing reflectance information, and another con-
taining the illumination or shading. We use RAW or linearized RGB values
as input. For a Lambertian scene, the problem can be simply formulated as:

I(x, y) = S(x, y) ∗ R(x, y) (2.1)

where I(x, y) is the input image, S(x, y) is the shading image, R(x, y) rep-
resents reflectance information and ∗ is a per-channel Hadamard product.
Our goal is to obtain S(x, y) and R(x, y), given I(x, y). We make the prob-
lem tractable with a few assumptions well-grounded on existing vision and
image processing techniques. While of course our assumptions may not al-
ways be accurate throughout the whole image, they allow us to devise a
method that works very well on a large range of images while keeping our
algorithm simpler than other approaches.

assumptions Horn made the key observation that, for grayscale images,
sharp reflectance changes cause intensity discontinuities in the luminance of
an image [74]. Our first assumption relies on the later generalization to color
images by Funt et al. [51], who associate changes in reflectance with changes
in chromaticity. We first leverage this correlation between reflectance and
chromaticity values by detecting regions of similar chromaticity in the input
image, which are assumed to approximate regions of similar reflectance. We
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implement this as a soft constraint, though, which we relax in specific cases
(see Sections 2.3.1 and 2.3.2).

Furthermore, existing Retinex-based techniques (see for instance [51, 91,
163]) assume that shading is a smooth function, therefore being both C0 and
C1 continuous. However, there are a number of particular cases (such as
some occlusion boundaries) in which this assumption does not hold. Our
second assumption relaxes this restriction by imposing only C0 continuity
at boundaries between the regions previously detected. This allows us to han-
dle a wider variety of cases correctly; in cases where the smooth shading
assumption does hold, our method naturally maintains C1 continuity as
well (see Figure 2.1). In cases where this assumption breaks, our method
still provides a more accurate reconstruction of the intrinsic signals. Last,
as previous works, we assume a white light source and a correctly white
balanced input image.

overview Figure 2.2 shows an overview of our algorithm, applied to
patches of different colors with a continuous shading gradient. It works in
two steps, which we term clustering and system definition. First, we segment
the input image according to chromaticity. We then subdivide the resulting
segments, and obtain a set of clusters of connected pixels with similar chro-
maticity. This clustering is then refined to better approximate reflectance (as
opposed to chromaticity) discontinuities, according to our first assumption.

Based on this clustering, we then build a linear system of equations defin-
ing the connections and relations between the different clusters, as well as
the different constraints. One set of equations describes the C0 continuity in
the shading at cluster boundaries (our second assumption). We then make
the observation that all clusters originally coming from the same segment
should in principle maintain similar reflectance, even if they are not contigu-
ous. This is similar to the observation made by Shen et al. [163]; however,
we improve this in two important ways: first, we do not need to rely on
texture information; second, we work at cluster level, as opposed to pixel
level, which translates into a more stable solution. This yields our second
set of equations. The system is completed with an additional regularization
term. By solving the resulting linear system we obtain the intrinsic shading
image; reflectance is obtained by means of a simple per-pixel RGB division
(Equation 4.1), as previous works [22]. The next sections describe these steps
in detail.

2.3.1 Clustering

We aim to divide the image into clusters of similar chrominance properties.
Given our assumptions, the boundaries between those clusters will indi-
cate reflectance discontinuities. This is a reasonable task, given the reduced
set of reflectance values in natural images [141]. This reduced set was also
leveraged in recent work by Bousseau et al. [22], who further assumed that
reflectance colors lie in a 2D plane not intersecting the origin. Several exist-
ing segmentation techniques, such as Mean Shift, the graph-based method
by Felzenszwalb and Huttenlocher [45] or its subsequent modification [56]
have been thoroughly tested, but unfortunately none would yield satisfying
results for our purposes. We thus have designed a novel two-step clustering
strategy, specially tailored for the problem of intrinsic images decomposi-
tion. For the sake of clarity, we refer to the first step as segmentation, and to
the second as clustering.
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segmentation We first segment the image according to chromaticity
values, regardless of the spatial location of the pixels. We define our seg-
mentation feature space as F = {β, a, b} where (a, b) are the chromatic co-
ordinates of the input image in CIELab space, and β is a feature defined to
handle strong blacks or whites (these are defined as pixels with very low
chromaticity values and very low or high luminance). These values would
be difficult to segment properly in a chromaticity-based algorithm, and usu-
ally describe important reflectance features. For each pixel in the image, we
define β as:

β =


−µ if (|a|< λ) & (|b|< λ) & (L < Lmin)

+µ if (|a|< λ) & (|b|< λ) & (L > Lmax)

0 otherwise

(2.2)

where µ = 105, λ = 0.20 max(|a|, |b|), Lmin = 0.15 max(L) and Lmax = 0.95 max(L).
For this initial segmentation, we use the k-means implementation from Ka-
nungo et al. [87]. Gehler and colleagues [59] also used k-means for their
global sparse reflectance prior, which along with their shading prior and
their gradient consistency term, fit into their global optimization system. In
contrast, we use this segmentation to drive a simple and efficient system of
linear equations. Note that the high µ value in the definition of β in equa-
tion 2.2 effectively forces the algorithm to create different segments with
only strong black (or white) pixels. Except otherwise noted, we set k = 10
as the number of segments, but in our implementation it is left as a user
parameter. The result of this step is a set of segments S = {Si} (see Fig-
ures 2.3.a and 2.3.b). These will guide the clustering step of the process, and
help define global reflectance constraints between disconnected areas of the
image during the system definition stage of the algorithm (Section 2.3.2).

clustering The previous segmentation defines global relations between
(possibly disconnected) regions of the image. We now take into account lo-
cal constraints by considering spatial contiguity. We first subdivide each
segment Si ∈ S into a set of clusters of contiguous pixels (8-neighborhood
in image space), obtaining Qo = {Qo

i } (Figure 2.3.c). This set Qo may con-
tain very small clusters (due to quantization, aliasing or smooth varying
textures), which could potentially later make our system less stable, or pairs
of connected clusters where changes in chromaticity do not correspond to
changes in reflectance (maybe due to shadows [62]).

Merging small clusters: Given a cluster Qo
r containing less than p pixels,

we locate its neighbor cluster Qo
s with the closest average chrominance and

merge them together: Qo∗
s = Qo

r ∪ Qo
s . For the results in this work we use

p = 10. This process is iterated until no more small clusters remain (Figure
2.3.d).

Merging smooth boundaries: Since chrominance and reflectance are not al-
ways exactly related, the k-means algorithm might yield over-segmented
results. Given two adjacent clusters Qo∗

r and Qo∗
s , we average RGB pixel dif-

ferences across the common border, obtaining a scalar d. The clusters are
merged into Qrs if d < D. The threshold D is set to 0.01 times the maximum
pixel value in the image.

The result after these operations is our final cluster set Q = {Qi} (see
Figure 2.3.e).
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2.3.2 System definition

The previous step has yielded a set of clusters separated by reflectance dis-
continuities. We now describe how to estimate the intrinsic shading from
this initial clustering. We define a per-cluster factor fi that, multiplying the
luminance of the pixels of the cluster, will result into the intrinsic shading:

S(x, y) = fiL(x, y) (2.3)

where (x, y) ∈ Qi. Instead of using expensive optimization techniques, we
build a linear system of equations where fi are the unknowns of our system.
This system is built from three sets of equations as described below.

luminance continuity We first enforce C0 luminance continuity at
the boundaries between clusters, in effect assigning abrupt changes at such
boundaries to reflectance variations. Given the boundary between two clus-
ters Qr and Qs:

fr Lbnd(Qr)− fs Lbnd(Qs) = 0 (2.4)

where Lbnd(Qr) represents the luminance of the pixels in cluster Qr at the
boundary with cluster Qs (and vice versa for Lbnd(Qs), see Figure 2.2.d).
Last, fr and fs are the unknowns that force luminance continuity. In prac-
tice, we make Equation 2.4 more robust and obtain Lbnd(·) by averaging the
luminance values of several pixels in a small window to each side of the
boundary. We set the width of this window to three pixels for all the images
in the chapter.

However, applying exactly Equation 2.4 leads to an unstable behavior of
the linear system; instead, we rewrite it in log-space:

ln( fr)− ln( fs) = ln
(

Lbnd(Qs)
Lbnd(Qr)

)
(2.5)

which leads to a more stable system and avoids both the trivial solution
fi = 0 and solutions with any fi < 0. We apply Equation 2.5 to each pair of
contiguous clusters.

clusters of similar reflectance All clusters inQ coming from the
same segment Si ∈ S should in principle maintain similar reflectance. For
each pair of clusters {Qr , Qs} ∈ Si we then have one equation per-channel
with c = {R, G, B}:

Ic(Qr)
fr Lav(Qr)

=
Ic(Qs)

fs Lav(Qs)
(2.6)

where Ic(r) is pixel average of the input image for all the pixels of the cluster
Qr and Lav(r) is the average luminance of cluster Qr (with an analogous
definition for Qs). We again reformulate this in log-space:

ln( fs)− ln( fr) = ln
(

Ic(Qs)Lav(Qr)
Ic(Qr)Lav(Qs)

)
(2.7)

However, clusters of the same chromaticity may actually have different re-
flectance, in which case the corresponding equations should not be included
in the system. We adopt a conservative approach, and turn to the L coordi-
nate to distinguish between different reflectances (e.g. light red and dark
red). We define a threshold TL of 5% of the maximum luminance of the im-
age, and apply Equation 2.7 across clusters only if |Lav(Qr)− Lav(Qs)|< TL.
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luminance regularization Last, we add a regularization equation
to the system as follows:

∑
i

ln fi = 0 (2.8)

With these three steps, we have posed our problem of obtaining intrinsic im-
ages as a system AX = B, where the number of equations equals the number
of cluster boundaries plus the reflectance similarity equations plus the regu-
larization equation. The elements of the unknown vector X are xi = ln( fi). In
order to ensure the numerical stability of the solution, we solve the equiv-
alent system ATAX = ATB by means of a Quasi-Minimal Residual method
(QMR) [130]. We found that using a standard Jacobi pre-conditioner yields
good results in our context. From the solution vector X we can trivially ob-
tain the final fi = expxi for each cluster Qi. Last, we account for the fact that
our algorithm assigns each pixel to a given cluster (thus creating hard bor-
ders between clusters), while in contrast all the input images present some
blur at the edges due to the imaging process; we therefore apply a 5× 5
median filter at the cluster boundaries to obtain the final shading image.

2.4 results and discussion

Most of the results shown in this work have been generated from 16-bit
RAW images, although in general our algorithm works well on linearized,
8-bit images. Larger versions of the results, along with detailed clustering
and scatter plot data, are included in the Appendix 2.A. Using our unopti-
mized code, our algorithm works at interactive rates e.g. an average image
such as clown (see Figure 2.11), which results in 834 clusters, takes around
5 seconds on an Intel Core i5-2500 CPU at 3.30 GHz. In our tests, the most
complex images may have up to 3000 clusters, resulting in about 15 seconds
of processing time. Figure 2.4 shows how our algorithm successfully deals
with the varied geometrical and texture complexities of several challenging
web images, producing satisfying results (more examples can be found in
the Appendix 2.A). Dragon in the last row illustrates how 8-bit images may
present pixel values close to zero, which cause numerical instabilities and
are hard to disambiguate for any intrinsic images decomposition algorithm.
This problem is greatly ameliorated with 16-bit images.

In Figures 2.9, 2.10, 2.11 and 2.12 we include an exhaustive comparison
against state-of-the-art methods. We have tried to gather together all the
published results common to most methods, but not all methods report re-
sults on all images. Compared to other automatic, single-image approaches,
Tappen et al.’s technique [173] shows perceivable reflectance artifacts in the
shading image. Shen et al.’s method [163] suffers from posterization artifacts
in the recovered reflectance (see for instance the doll image or the sky in St.
Basil); additionally, almost all the shading images show severe continuity
artifacts.

Shen and Yeo [164] provide a somewhat limited selection of images in
their paper, both of which appear in our figure. It can be seen how in baby,
the shading shows inconsistencies such as the exaggerated contrast between
the legs and floor, while the eyes have been wrongly assigned to the shading
layer.

The method of Gehler et al. [59], although producing reasonable results
for the MIT dataset, tends to retain reflectance in the shading layer for nat-
ural images (see for instance baby image in Figure 2.10 or synthetic doll in
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Figure 2.12). Moreover, their optimization function is computationally ex-
pensive, taking several hours, while our technique takes seconds to finish.

Last, the doll result using Weiss’s approach [182], despite using 40 images
taken under carefully controlled settings, shows clear shading residuals in
the reflectance layer, and wrong gradients in the shading image.

Our work yields results on-par with the user-assisted techniques by Bousseau
et al. [22] and Shen et al. [162], without requiring any user strokes. In St.
Basil, our solution shows some artifacts especially visible in the black ar-
eas assigned to reflectance. Bousseau’s result is free from such artifacts, al-
though at the expense of requiring 81 user strokes, divided in three different
kinds. Although the authors show that their method is robust to small per-
turbations applied to such strokes, placing them from scratch is probably
challenging for unskilled users. In contrast, our automatic method does a
better job at assigning the doll’s eyelashes to the reflectance layer Further-
more, Bousseau’s method is not well fitted for texture images with rich re-
flectance variations, as recently demonstrated by Dong and colleagues [37].
Our approach is free from such restriction, and it handles those cases well
(see Figures 2.5 and 2.6).

applications Accurate decomposition into intrinsic images can play
an important role in a broad range of applications such as material edit-
ing or image relighting. Figure 3.13 shows some applications using our
intrinsic decomposition. For re-texturing we modify the reflectance layer
and use the same normal-from-shading approach to deform the new tex-
tures. The relighting example, in this case, uses an image-based relighting
algorithm [117] that modifies the shading image before multiplying it by
a sepia-shifted reflectance. Last, the wheel on the right shows another ex-
ample of global reflectance manipulation. Furthermore, our technique can
also be used in conjunction with others, such as the image-based material
modeling technique recently presented by Dong et al. [37].

mit dataset We have also tested our method using images from the
MIT image dataset provided by Grosse et al. [63]. This dataset is designed
to test intrinsic image decomposition methods, providing ground truth im-
ages for a variety of real-world objects. Figure 2.5 shows some examples of
our results, compared against Color-Retinex, the combination of Weiss [182]
and Retinex and the recent approach by Dong et al. [37]. Note that Weiss’s
technique requires more than 30 input images, while the algorithm by Dong
et al. requires user strokes. As we can observe, our algorithm obtains near
optimal results in these cases. The full set of results can be seen in Figures 2.5
and 2.6.

Other MIT images are much more ill-posed for any intrinsic images al-
gorithm, presenting extremely complex combinations of shading, smooth
varying textures and poor chromaticity. Figure 2.7 shows our results for the
cases of squirrel and deer. On the top rows, we show the original image along
with our recovered shading and reflectance. Although our method yields
reasonable results, some artifacts are clearly visible. This is mainly due to
the extremely poor chromaticity variation of the original images, which ham-
pers our segmentation step. The bottom row shows scatter plots of squirrel
and deer, along with St. Basil and raccoon for comparison purposes. Note
how, despite its overall lack of chromaticity, raccoon presents clear distinct
areas in the (a,b) plane, due to the scribbles painted on its surface. To the
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best of our knowledge, there is no published method that can successfully
deal with images such as squirrel or deer.

occlusion boundaries Our method lets us handle a wide variety of
images even in the presence of occlusion boundaries or sharp edges, where
our assumptions do not hold. This is due to our robust linear system formu-
lation: The number of equations describing C0 continuity at an offending
occlusion boundary is usually very small compared with the total number
of equations in the system, which diminishes their influence in the result.
For instance, the system solved for St. Basil is made up of 3557 equations,
from which only 267 belong to occlusion boundaries (a mere 7%). In all the
images shown in this work, we only found one case (doll) where the per-
centage of offending equations was higher than 10% (48 over 282 equations,
17%). This image presents a unique combination of reflectance distributions
that makes it especially challenging for our algorithm. It shows a very uni-
form background (which translates into very few clusters adding equations
to the system), whereas the doll itself has lots of patches of different re-
flectance in contact with such background, due to the striped pattern of its
clothes (adding a relatively high number of occlusion boundary equations).
Note how, in contrast, St. Basil presents most of the colorful patches inside
the building itself (few equations describing occlusion boundaries with the
sky). Even though the automatic results provided by our system may be
considered satisfactory, we can improve them by simply creating a matte of
the doll, which can be easily done with existing image editing tools, and
then solve the two resulting images (doll and background) as separate prob-
lems. Figure 2.12, bottom row, shows the result of directly applying our
method, and the improved results with our quick matting profile created
in Photoshop c©. Artifacts due to the inherent difficulty of this image can be
seen across all methods.

2.5 conclusions and future work

Decomposing an image into its intrinsic components is still an open prob-
lem with multiple potential applications. Automatic methods such as ours
need to rely on reasonable assumptions or additional sources of informa-
tion. On the other hand, existing user-assisted methods remain challenging
for the average unskilled user, given the difficulty in telling apart the con-
founding factors of reflectance and shading in some situations. Our problem
formulation is less restrictive than traditional Retinex-based methods, and
allows us to relax our initial assumptions in certain cases. We have shown a
wide variety of results, not only on natural scenes, but on the MIT dataset
and even texture images as well. Additionally, we have also provided a thor-
ough comparison with previous approaches. Our algorithm produces better
results than other automatic techniques on a broad range of input images,
and on-par compared to user-assisted methods, but without the challenging
task of providing the right strokes.

A potential line of future work would be to use our results as input to
a simplified user interface, where it would be simpler to fix remaining ar-
tifacts. Also, our work could inspire and benefit from further research on
segmentation methods. In conclusion, we believe that our approach offers
an attractive trade-off between accuracy of the results, ease of use and effi-
ciency.
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a
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(a)

|S|=10

|Q0|=726 |Q0*|=101 |Q|=89

(b)

(d) (e) (f)
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Figure 2.3: Our segmentation-clustering process. (a) Input image (b) Result of the first
segmentation step, yielding 10 distinct segments in S . (c) Top, scatter plot of the input image
in the (a,b) plane. Bottom, scatter plot of the first segmentation step. (d) Initial clustering
(726 clusters in Qo). (e) Merging small clusters. (f) Final cluster set Q after merging smooth
boundaries (89 clusters). The yellow and blue circles highlight areas were the effects of these
last two steps are clearly visible. Notice how noise is eliminated (yellow circles), as well as
smooth gradients due to shadows (blue circles).
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Figure 2.4: Intrinsic images obtained with our method (using 8-bit input images). Left
column: Input image. Middle column: Intrinsic shading. Right column: Intrinsic reflectance.
First row: lollipop, k = 10 (original image by Thalita Carvalho, flickr.com). Second row:
Batlló house, k = 12 (original image by lukasz dzierzanowski, flickr.com). Third row: wheels,
k = 16 (original image by Angela Smith Kirkman). Last row: dragon, k = 22 (original image
by Jordanhill School D&T Dept, flickr.com)
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Ground Truth Our workInput Image

Figure 2.6: Intrinsic images for the MIT dataset. First column, input image. Second and
third columns, ground truth shading and reflectance. Last columns, our resulting shading
and reflectance. The gamma of the images has been corrected for visualization purposes.



30 intrinsic image decomposition

Figure 2.7: A challenging case for our algorithm. Top rows, from left to right: input image,
and our intrinsic shading and reflectance. Notice the shadow close to the tail in the reflectance
image. Bottom row: Comparison of scatter plots. From left to right: deer, squirrel, St. Basil
and raccoon. Notice the lack of chrominance variation in squirrel and deer, compared to the
other two plots.

Figure 2.8: Image edits accomplished using our intrinsic decompositions. Left: Re-texturing
by editing the intrinsic reflectance. Center: Relighting of the previous result editing the in-
trinsic shading (sepia effect by editing intrinsic reflectance). Right: Global color edits on the
intrinsic reflectance.
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[Bousseau et al. 2009]
(81 strokes)

[Shen et al. 2011]
(auto)[Tappen et al. 2005] [Shen et al. 2008] [Shen and Yeo 2011] [Gehler et al. 2011]

[Gehler et al. 2011]

Our work

Input image ( Moscow ) User strokes
[Bousseau et al. 2009]

[Bousseau et al. 2009]
(58 strokes)

[Shen et al. 2011]
(auto)[Shen et al. 2008] Our work[Shen and Yeo 2011]

Input image ( baby) User strokes
[Bousseau et al. 2009]

[Tappen et al. 2005]

Figure 2.10: Baby and St. Basil. baby: Our shading image is comparable with the one ob-
tained by Bousseau et al. [22] which needs 58 user strokes. Note that the result by Shen et
al. [163] has quantized the leg of the baby while our result keeps the continuity in the shad-
ing. The shading by Shen and Yeo [164] is not totally homogeneous and contains reflectance
information. Moreover, our reflectance image successfully captures the facial features, outper-
forming the other methods. St. Basil: The methods by Shen et al. [163] and Tappen et al. [173]
introduce obvious artifacts in the shading. Bousseau et al.’s method produces great results,
although it requires 81 user strokes (original image by Captain Chaos, flickr.com).
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Input image (clown)

[Bousseau et al.
2009]

(33 strokes)

[Shen et al. 
2008] Our work

[Shen et al.
2011]
(auto)

User strokes
[Bousseau et al. 2009]

[Tappen et al.
 2005]

[Bousseau et al. 2009]
(31 strokes)

[Shen et al. 2011]
(auto)

[Tappen et al. 2005] Our work

Input image (coat)

User strokes
[Bousseau et al. 2009]

Figure 2.11: Top: clown. The methods by Shen et al. [163] and Tappen et al. [173] introduce
obvious artifacts in the shading. Our result is comparable with Bousseau et al. [22] without
requiring user strokes. Bottom: coat. Our result without any user strokes is not far from the
result obtained by Bousseau et al. [22] using 28 strokes.
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[Tappen et al. 2005][Weiss et al. 2001] [Shen et al. 2008]

[Bousseau et al. 2009]
(41 strokes)

[Shen et al. 2011]
(unknown strokes)

[Shen et al. 2011]
(auto) Our work Our work with matte

Input image (doll)

User strokes
[Bousseau et al. 2009]
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generation

Figure 2.12: doll. The automatic methods by Shen et al. [163] and Tappen et al. [173] fail to
obtain an homogeneous shading on the legs.
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appendices

2.a additional results : clustering and decomposition per scene

Figures 2.13– 2.21. (From left to right) First column, input image and scatter
plot of pixel data in the (a,b) plane (Lab color space). Second column, k-
means segmentation according to (a,b) pixel coordinates; third column, final
clustering yielded by our method taking into account spatial information
(both, second and third rows, are depicted in false color). Last columns, the
resulting shading and reflectance intrinsic images.

Figure 2.13: Synthetic

Figure 2.14: Lollipop (original image by Thalita Carvalho, flickr.com)

Figure 2.15: Batlló house (original image by lukasz dzierzanowski, flickr.com)
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Figure 2.16: Wheels (original image by Angela Smith Kirkman)

Figure 2.17: Dragon (original image by Jordanhill School D&T Dept, flickr.com)

Figure 2.18: Baby

Figure 2.19: St. Basil (original image by Captain Chaos, flickr.com)
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Figure 2.20: Coat

Figure 2.21: Clown





3I N T R I N S I C V I D E O D E C O M P O S I T I O N

In this chapter we extend the problem of intrinsic image decomposition to
the temporal dimension and present a method to decompose a video into its
intrinsic components of reflectance and shading, plus a number of related
example applications in video editing such as segmentation, stylization, ma-
terial editing, recolorization and color transfer. Intrinsic decomposition is
an ill-posed problem, which becomes even more challenging in the case
of video due to the need for temporal coherence and the potentially large
memory requirements of a global approach. Additionally, user interaction
should be kept to a minimum in order to ensure efficiency. We propose a
probabilistic approach, formulating a Bayesian Maximum a Posteriori prob-
lem to drive the propagation of clustered reflectance values from the first
frame, and defining additional constraints as priors on the reflectance and
shading. We explicitly leverage temporal information in the video by build-
ing a causal-anticausal, coarse-to-fine iterative scheme, and by relying on
optical flow information. We impose no restrictions on the input video, and
show examples representing a varied range of difficult cases. Our method
was the first one designed explicitly for video; moreover, it naturally ensures
temporal consistency, and compares favorably against the state of the art in
this regard. This work has been published in ACM Transactions on Graphics
and presented at SIGGRAPH 2014.

Y. Genzhi, E. Garces, Y. Liu, Q. Dai & D. Gutierrez
Intrinsic Video and Applications

ACM Transactions on Graphics (SIGGRAPH), Vol.33 (4), 2014

3.1 introduction

Decomposing an image into its intrinsic shading and reflectance layers is an
ill-conditioned problem with direct applications in computer graphics and
image processing, such as retexturing and relighting. In the past few years
there have been numerous works tackling this problem from different angles.
Some propose fully automatic methods from single images [173, 57], or rely
on user annotations [22, 162]. Others leverage information from multiple im-
ages [100] or time-lapse sequences [182, 168]. Nevertheless, the problem of
decomposing a video shot into its intrinsic components remains unexplored.

Intrinsic video decomposition is particularly challenging, since tempo-
ral coherence must be preserved, even in the presence of dynamic light-
ing or occluded surfaces coming into view due to object or camera motion.
Naively applying any existing intrinsic images algorithm to every individ-
ual frame yields poor results, due to the extremely ill-posed nature of the
problem and the lack of built-in temporal coherence. Solving the problem
on a few keyframes and then interpolating also leads to bad results, since
there is no guarantee that resulting reflectance values will be coherent across
keyframes. Last, trying to solve the problem globally for the whole sequence
would be impractical due to large memory requirements. Another possible
approach would be to rely on video segmentation: however, given the rich
complexity of video shots, no existing algorithm can guarantee a reliable

39
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temporal coherent segmentation. Instead, we focus on an accurate and effi-
cient propagation of the reflectance from an initial intrinsic decomposition on
the first frame.

Propagating reflectance is different from other propagation approaches
(such as video colorization) given the impossibility of building a reliable
feature space: The information we wish to propagate (reflectance) is not ex-
plicitly coded in the RGB values of the frames and, as we argued, obtaining
it on a per-frame basis leads to disturbing flickering artifacts. Instead, we
propose a relaxed propagation approach based on a Bayesian framework
and solve a Maximum A Posteriori (MAP) problem. To avoid accumula-
tion errors, we define a local confidence threshold and stop the propaga-
tion when the number of unreliable pixels surpasses it. We then leverage
shading information to complete the reflectance layer at the stopping frame,
and propagate backwards. We iterate this process using a coarse-to-fine ap-
proach.

Our approach has the following desirable characteristics: 1) it is efficient,
since at each step it only uses information from the current and previous
frame; 2) it takes advantage of information in the temporal dimension given
its causal-anticausal scheme; 3) it is temporally stable; 4) it leverages the
characteristics of intrinsic images, both from reflectance and shading; and
5) it keeps cumbersome user interaction to a minimum (most of the results
shown in this chapter are fully automatic, while a few others required a few
scribbles on the first frame only). Additionally, we show some video edit-
ing applications of our work, including segmentation, recolorization, color
transfer, stylization and material editing.

3.2 related work

intrinsic image decomposition from a single image Automatic
decomposition of a single image into its intrinsic components usually relies
on Retinex theory [102], by analyzing local pixel derivatives, to distinguish a
change in reflectance from a change of shading [173]. Some methods add pri-
ors to a Retinex-based framework, either on the illumination, the reflectance,
or both [83, 59, 164]. Garces et al. [57] build clusters of similar chromaticity,
from which connections and constraints are defined. Inspired by this, we
work on a simplified cluster space of similar reflectance, obtained from an
initial single-frame decomposition. Lombardi and Nishino [114] introduce a
probabilistic formulation with data-driven and entropy constraints, but the
method is limited to obtaining the reflectance of single objects with homoge-
neous materials. A recent work by Zhao et al. [197], building on the work by
Shen et al. [163], formulates Retinex as a linear optimization, forcing distant
pixels with the same texture to have the same reflectance. A different set of
techniques rely on user intervention to constrain the problem by specifying
sparse sets of pixels with similar properties [22, 162]. Applying any of these
techniques on each frame of a video causes disturbing flickering artifacts,
due to the lack of built-in temporal coherence mechanisms.

intrinsic image decomposition from multiple images A few
methods try to leverage information from multiple images of the same static
scene, and analyze pixel variations under varying illumination [182, 69]. A
more flexible solution is given by Laffont et al. [100], which reconstructs a
point-based 3D representation of the scene. Similarly, Liu et al. [113] use
several images of the same scene with the purpose of image colorization.
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Different from these techniques, our method is designed to work on video
sequences, where the key simplifying assumption of a static scene no longer
holds.

intrinsic video decomposition The most similar approach to ours
is the work of Yan et al. [187]. The authors rely on per frame intrinsic de-
composition in local regions, in order to re-texture specific objects in a video.
However, editing a complete video this way would again produce temporal
inconsistencies. Specific intrinsic video has only recently been done by Lee
et al. [104], but it requires additional depth information from Kinect. Mat-
sushita et al. [123] use a simpler approach where the goal is only to elimi-
nate shadows in open scenes, as a pre-processing step for video surveillance,
and not to produce a complete intrinsic decomposition. Finally, the heuris-
tic approach of Sunkavalli et al. [168] decompose a time-lapse sequence into
its intrinsic components assuming certain properties of the sky light of the
scene. The method works well on static images, but is not able to cope with
camera movements.

video colorization Colorization algorithms are also somewhat re-
lated to our problem [106, 190, 16, 142]. However, better results can be ob-
tained for such a task if the intrinsic components are available, where shad-
ing information does not interfere in the process. Moreover, these methods
usually require user input every few frames; in contrast, our method is fully
automatic in most sequences, requiring at most minimal user input only on
the first frame.

temporal consistency Guaranteeing temporal consistency across frames
is a challenge for video editing algorithms. Paris [144] combines isotropic
diffusion and Gaussian convolution to adapt classical algorithms like mean
shift segmentation or bilateral filtering to video streams. Farbman and Lischin-
ski [43] propagate values using a combined technique of optical flow and
interpolation, for the purpose of tonal stabilization. Recently, Bonneel et
al. [20] applied curvature-flow smoothing in the space of color transforma-
tions to transfer color palettes between videos. These techniques are adapted
to the particular problems they address, and cannot be easily modified for
our purposes. Last, Lang et al. [103] propose an efficient framework to en-
force temporal smoothness across frames. They approximate a global op-
timization, and show very good results for applications such as disparity
estimation, depth upsampling or colorization. However, even after a decent
amount of scribbles and parameter tuning, there is an inherent trade-off
between the spatial filtering necessary to perform temporal filtering. For
the case of intrinsic video, given the large variability across frames of the
individual intrinsic decompositions, this causes clear ghosting artifacts, as
Figure 3.10 shows.

3.3 overview

Let ft(t = 0, 1...) be the frames of an input video sequence, with color values
Ip,t for each pixel p in each time step t. At each frame, the intrinsic decompo-
sition problem can be formulated as finding the reflectance Rp,t and shading
Sp,t layers that satisfy:

Ip,t = Rp,t × Sp,t (3.1)
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where × denotes per-channel multiplication. The great challenge lies in en-
suring temporal coherence of the results, while avoiding the huge memory
requirements that analyzing the video as a whole would impose.

We first obtain the reflectance-shading decomposition of the first frame,
and obtain clusters of similar reflectance. We then formulate a probabilistic
framework that allows us to propagate reflectance values along the frames
of the video. In particular, we solve a Maximum A Posteriori (MAP) prob-
lem, using a smoothness prior and imposing additional constraints to en-
sure robustness in the results. At each step, we only propagate values above
a certain confidence threshold, and stop the propagation when the num-
ber of unknown pixels becomes significant. We follow a coarse-to-fine ap-
proach, and perform a local decomposition at the stopping frame, using
known reflectance values as constraints, and proceed to propagate the new
values backward in time. This combined propagation-completion, forward-
backward approach allows us to deal with challenging cases like occluded
objects.

This process is iterated three times. Last, we apply a smoothness con-
straint on the shading on the few remaining unassigned pixels, from which
we derive the missing reflectance values by simple division. The algorithm
then begins again the propagation in a similar manner from the last pro-
cessed frame, until a new stopping frame is found or the whole sequence is
processed. Figure 4.5 and Algorithm 1 show an overview.

Algorithm 1 Intrinsic Video decomposition
1: [R0, S0] = IntrinsicImageDecomposition(I0)
2: [C , I ,R] = ReflectanceClustering(I0, R0)
3: for each iteration do
4: ft ← 1
5: repeat
6: fs ← lastFrame
7: /* Forward propagation */
8: for f := ft : lastFrame do
9: R f ← ReflectancePropagation(R f−1, C , I)

10: if StoppingCondition(R f ) then
11: fs = f
12: break
13: end if
14: end for
15: [R fs , S fs ]← ReflectanceCompletion(R fs , S fs )
16: [C , I ,R]← ClusteringUpdate(R fs , C ,R)
17: /* Backward propagation */
18: for f := fs : ft do
19: R f ← ReflectancePropagation(R f +1, C , I)
20: end for
21: ft ← fs + 1
22: until fs = lastFrame
23: end for
24: [R, S]← ResidualCompletion(R, S)
25: return R, S
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Figure 3.2: Local optimization. Using a global threshold T, reflectance variations with low
chromaticity change may be mis-classified as shading (top-right). By allowing T to vary
locally in a user-defined region, this is corrected (bottom-right). The user-defined scribble
appears in blue.

3.4 initial decomposition and clustering

We first aim to find a clustered reflectance decomposition on the first frame,
which will be the input to our probabilistic propagation framework. Given
the ill-posed nature of the problem, we need a flexible approach that pro-
duces good results automatically, while allowing a certain amount of user
interaction to improve the results if needed. We base our approach on a com-
mon Retinex formulation [102]; in particular we extend the single-image
formulation by Zhao et al. [197], who define a global optimization frame-
work and allow user interaction with constant-albedo and constant-shading
strokes [22] (refer to Appendix 3.A for a quick overview). Naively running
the algorithm on every frame yields obvious flickering artifacts (see Section
3.8 and the accompanying video), while extending the optimization to the
whole video is prohibitively expensive and may lead to poor results.

We thus extend the original formulation by Zhao et al. in three ways:
First, by allowing the user to define local optimizations in selected areas of
the image. Second, by moving from a pixel-based representation to a more
consistent (and efficient) cluster-based approach. And third, by imposing ad-
ditional constraints during propagation, derived from temporal information
in the video. We present details of the first two extensions in the following
paragraphs, while the third is explained in Section 3.5.1.

local optimizations The global optimization by Zhao and colleagues
is based on a global threshold T defined over the whole image, which de-
termines how sensitive the decomposition is to changes in chromaticity. In
particular, the authors define a balance factor ωp,q (where p, q denotes all
neighboring pairs of pixels) as follows:

ωp,q =

{
0, if ‖ Jp − Jq ‖ > T

100, otherwise
(3.2)

where J denotes chromaticity. We set T = 10−3 for all the results shown in
the chapter. A lower value of T tends to produce an over smooth shading,
while higher values assign most of the intensity variations to the shading
layer, approximating the results to a chrominance-luminance decomposition.
Since in Zhao’s formulation the threshold T is defined globally, this may
lead to unequal results in different parts of the image.

We thus allow for local variations of T within different regions of the im-
age, which the user identifies by simply drawing approximate masks (using
for instance lazy snapping [111]). Following Retinex theory, we assume that
within a mask shading varies smoothly, which is therefore captured by the
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lower intensity gradients. We then redefine T locally as T′ = 0.05× µ (∇J),
where µ is the mean of the chromaticity gradient of the pixels inside the
mask. Figure 3.2 shows an example.

reflectance clustering Given the large volume of data contained
in a video, a pure pixel-based approach is inefficient, while being more
error-prone and causing temporal instabilities in the form of jittering ar-
tifacts. Hence, we cluster the initial reflectance decomposition by grouping
together sets of pixels sharing similar reflectance values. To reduce mem-
ory requirements, we first obtain an over-segmented image, where all pixels
in a segment are spatially connected. We use a graph-based segmentation
approach [45]. Although this method is very sensitive to changes in param-
eters, we take advantage of the fact that we only need a rough initial seg-
mentation, and use the same fixed parameters for all our results: size of the
Gaussian blur σ = 0.8, segmentation cut threshold K = 50, and minimum
size of the segment min = 256. We then group these segments into larger
clusters where pixels no longer need to be connected in image space. We
iteratively merge two segments if the difference between their average RGB
values is smaller than the specified threshold K. This process yields our final
reflectance clustering C.

Additionally, we create a suitable data structure for our subsequent re-
flectance propagation (Section 3.5). This structure maps image values with
clustered reflectance values. For each cluster Ck ∈ C, we compute two dif-
ferent tables indexed by 3D (RGB) vectors. The first table Rk is simply a
histogram of reflectance values; the function ρ(k, r) returns the number of
pixels with reflectance r in cluster Ck. The second table Ik stores, on the
one hand, a histogram of color values, where the function γ(k, l) returns the
number of pixels with color l in cluster Ck; additionally, it stores the asso-
ciated reflectance rk,l for each color l. If more than one pixel have the same
color but different reflectances in the same cluster, the average reflectance is
stored. This helps ameliorate possible inconsistencies in the initial decompo-
sition, yielding a more coherent reflectance. Tables Rk and Ik will be later
used and updated during our probabilistic reflectance propagation and com-
pletion steps (Sections 3.5 and 3.6). Figure 3.3 shows a comparison of our
result with the initial decomposition of Zhao et al. [197].

3.5 reflectance propagation

We now proceed to propagate reflectance values along the temporal dimen-
sion, following a coarse-to-fine iterative approach. Reflectance propagation
consists of three steps: forward propagation, reflectance completion, and
backward propagation. Last, a final residual reflectance completion takes
place. Figure 3.4 illustrates this process.

3.5.1 Probabilistic framework

We introduce a Bayesian formulation for reflectance propagation, which en-
ables the integration of reflectance-color statistical inference from tables Rk
and Ik, which are updated at each step, plus a location-reflectance prior
from the former frame. Moreover, we jointly optimize pixel clustering with
reflectance propagation. With this combined analysis on color, intrinsic re-
flectance and clustering, we obtain temporally consistent results.
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Figure 3.3: Reflectance clustering. Top: Input frame with user scribbles for constant-albedo
regions. Middle: Reflectance from Zhao et al. [197]. Bottom: Our reflectance after the clus-
tering step. Note that our reflectance is more consistent and lends itself better to temporal
propagation.

Given a pixel p in frame ft, with an input RGB color vector lp,t, we aim to
find the matching cluster in the previous frame ft−1 with the most similar
reflectance value (the reflectance of pixel p is unknown at this point), while
avoiding over-fitting. We introduce a probabilistic formulation to find the
cluster index k̄ which maximizes the posterior probability P(Ck|p). We can
define a Maximum A Posteriori (MAP) problem as:

k̄(p) = arg max
k

P(Ck|p) ∝ P(p|Ck) · P(Ck) (3.3)

where P(p|Ck) is the likelihood that pixel p belongs to cluster Ck, and P(Ck)
acts as a prior. We discuss these two terms in the following paragraphs.

To limit our search to the most probable candidate regions (thus improv-
ing accuracy and efficiency), we leverage the information contained in the
video and compute optical flow [23] between ft and ft−1, to obtain the cross-
frame motion vector up. This vector defines the corresponding pixel p′ in
frame ft−1 as p′ = p + up. We then only query the pixels inside an N × N
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(N = 50) window Wp′ defined in ft−1 and centered at p′. Our MAP prob-
lem (Equation 3.3) is therefore only solved for all the clusters intersecting
window Wp′ .

likelihood P(p|Ck) The likelihood of a pixel p belonging to a cluster
Ck is based on the probability density function of cluster Ck. We formulate
a standard non-parametric density estimation problem to estimate the fit-
ness of assigning a pixel to a cluster according to pre-clustered pixels from
the previous frame, for which a Parzen window-based approximation is a
convenient and effective method. We define our normalized likelihood term
P(p|Ck) as:

P(p|Ck) =
1
|Ik|∑l

γ(k, l)G
(

l− lp,t

d

)
(3.4)

where |Ik| is the total number of pixels of cluster Ck, and G represents
a Parzen window defined by a 3-D Gaussian kernel function, with width
d = 5. In this form, P(p|Ck) represents the probability density function of
cluster Ck. Figure 3.5 (c) shows the propagated reflectance at this stage.

However, we note that this definition is biased towards clusters with a
large number of pixels. Since each cluster may contain several different re-
flectances, if we only divide Equation 3.4 by |Ik|, reflectances with more
pixels within the cluster (large γ(k, l)) will dominate. We thus introduce a
unit function U:

U (γ) =

{
1, γ > 0

0, γ = 0
(3.5)

and redefine P(p|Ck) as:

P(p|Ck) =
1

|U (Ik) |∑l
U(γ(k, l))G

(
l− lp,t

d

)
(3.6)

Note that we also apply the unit step function on Ik, where |U (Ik) | repre-
sents the number of non-zero entries in Ik. Including the unit step function in
our formulation makes the likelihood independent of the number of pixels
in each cluster, effectively removing bias (see Figure 3.5 (d)).

prior P(Ck) We adopt a smoothness prior common to many MAP so-
lutions. Given the pixel p′ computed from p by optical flow, we define
D(p′, q′) as the Euclidean spatial distance between pixels p′ and q′, where q′

belongs to the same frame as p′ and satisfies the following three conditions:
q′ ∈Wp′ , q′ ∈ Ck and q′ 6= p′. Our prior thus becomes:

P(Ck) = min
q′

(
D(p′, q′)

)− 1
2 (3.7)

Note that P(Ck) is independent of the intrinsic properties of a pixel, and
can be calculated after the former frame has been processed: it thus acts as
a prior even if it is not explicitly formulated as a probability. Figure 3.5 (e)
shows how the smoothness prior improves the reflectance propagation.

3.5.2 Additional constraints

Solving our MAP problem in Equation 3.3 for frame ft, we obtain the cluster
candidate k̄(p) indicating the best cluster match for pixel p. However, assign-
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Effect on reflectance propagation of every component of our algorithm: (a) Origi-
nal color frame (including user strokes for constant-albedo regions; highlighted area enlarged
in the insets). (b) Reflectance propagation without clustering. (c) Reflectance propagation
using Eq. 3.4. (d) Reflectance propagation using Eq. 3.6, adding the step function U. (e)
Reflectance propagation using both Eq. 3.6 and the distance term of Eq. 3.7. (f) Removing
low-confidence reflectance using Section 3.5.2 on the result of (e).

ing the corresponding cluster index to every pixel before proceeding to the
next frame would accumulate errors over time (as Figure 3.11 in Section 3.8
shows). This is in part due to factors such as antialiased edges, non-rigid mo-
tion, occluded surfaces or time-varying shading, which increase the number
of pixels in a given frame without a suitable cluster in the previous frame.

To avoid this, we take a conservative approach and only assign a definite
cluster index to those pixels above a high confidence threshold. We again
leverage the extra information in the temporal domain and postpone the
judgment of the unresolved pixels to subsequent processing (Section 3.6).
To define our high confidence threshold, we analyze two conditions: We
first check whether the posterior of k̄ satisfies P(Ck̄|p) > ε. We empirically
set the threshold ε = 0.8 (the maximum value of P is 1.0). Additionally, we
ask how close this probability is to the probability associated to the second-
best cluster Ck̄′ , by checking whether P(Ck̄|p) > βP(Ck̄′ |p). We fix β = 2,
which we found to work well for all the results shown in the chapter and
the Supplementary Video1

If these two conditions are satisfied, pixel p is assigned to a cluster, and its
reflectance value is set to rk̄,l . In this fashion, we successfully assign about
95% of the pixels for each frame. The reflectance of the rest of the pixels
is left undefined, and will be assigned later using information from other
frames. Figure 3.5 (f) shows the result after removing the pixels with low-
confidence reflectance.

1 http://webdiis.unizar.es/~elenag/projects/SIG2014_intrinsicvideo/

http://webdiis.unizar.es/~elenag/projects/SIG2014_intrinsicvideo/
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3.5.3 Stopping condition

We continue propagating reflectance values on successive frames ft+1, ft+2, · · ·,
following the same approach. Unassigned pixels in ft remain undefined in
subsequent frames, so the total number of such pixels increases as the prop-
agation continues forward. As a consequence, applying our propagation al-
gorithm over long stretches in the video sequence may lead to poor results,
with too many unassigned pixels in the end.

To bound the number of unassigned pixels, we define a stopping condi-
tion for our forward reflectance propagation, and stop when a given thresh-
old is reached. Instead of relying on the total number of unassigned pixels
over the whole image, we take a local approach and stop when the ratio of
unassigned pixels is greater than α = 80% in any local M×M window WM
on the current frame. This allows for timely detection of growing regions
of unassigned pixels, which would be too difficult to solve later if a global
threshold had not been reached yet. We begin with a value of M = 30, which
will be progressively reduced in subsequent iterations (see Subsection 3.6.1).
Figure 3.6 (a) shows the result of the forward propagation once the stopping
condition has been met. The remaining undefined pixels of all the processed
frames are left to later processing, explained in the following sections.

3.6 reflectance completion

Once the propagation has stopped at frame fs, we perform a local intrinsic
decomposition on the sparse set of unknown pixels in that frame. We take
advantage of the propagated reflectance values, and add them as constraints
into our framework. We first define a mask Ω0 containing all the unknown
pixels of frame fs, and perform a morphological expansion with a radius of
four pixels, so that the new expanded mask Ω∗ now also contains known
reflectance values (see Figure 3.6 (b)). We denote Ω1 = {Ω∗ −Ω0} as the set
of pixels with known reflectance, which are included as constraints adding
a new term λcEc to Equation 4.4 (see the Appendix), where:

Ec = ∑
p∈Ω1

(rp − r1
p)2 (3.8)

where rp and r1
p are the log-reflectance values of the unknown and known

pixels respectively. We set λc = 1000.
To avoid discontinuities introduced by the new reflectance values (see

Figure 3.6 (c)), we apply Poisson blending [146] with Dirichlet boundary
conditions on the arbitrary outlines of the regions:

∆Rc = ∆R1 over Ω0, with Rc|∂Ω0 = R1|∂Ω0 (3.9)

where ∆ is the Laplacian operator, and R1 and Rc are the known and the
newly obtained (completed) reflectance values on Ω0, respectively. Figure
3.6 (d) shows the final result.

clustering update We now need to find matching clusters Ck for the
pixels with new reflectance values. We rely on table Rk since the variation
of pixel values in reflectance space is smaller than in the original color space.
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Figure 3.6: Reflectance completion: (a) Forward reflectance stops at frame fs = f31. Unas-
signed pixels are depicted in black. (b) Partial, constrained reflectance completion over Ω∗. (c)
Simply combining the forward propagation reflectance with the partial completed reflectance
causes reflectance discontinuities (see for instance the yellow rectangle). (d) The result of our
Poisson reflectance smoothing.

Similar to Equation 3.6, we calculate the likelihood of pixel p belonging to
cluster Ck by maximizing:

P(p|Ck) =
1

|U (Rk) |∑r
U(ρ(k, r))G

(
r− rp,s

d

)
(3.10)

where rp,s is the reflectance of pixel p at frame fs, and |U (Rk) | is the num-
ber of non-zero entries of Rk for cluster Ck. Note that in this case we cannot
rely on our smoothness prior in Equation 3.7, since nearby pixels in the
previous frame will likely be unassigned also. We thus do not limit the
search to local windows, but search all clusters instead. Additionally, since
the completion works robustly, we do not need to enforce the conservative
constraints in Section 3.5.2 before assigning a cluster. Once the index k̄ with
maximum probability has been found, we update the corresponding Ik̄, Rk̄
tables to ensure an effective subsequent propagation.

Note that thanks to this updating process, our reflectance propagation of
frame k is not entirely determined by its adjacent frame only. In our prob-
ability formulation (Equation 3.3), the first term (Equation 3.6) is based on
the global histogram Ik, which is constantly updated based on information
from all the frames that have already been traversed. The smoothness term
in Equation 3.7 does depend only on the previous frame.

3.6.1 Coarse-to-Fine Propagation

Our next steps complete the remaining unassigned pixels, following a coarse-
to-fine approach. From the (partially) completed fs we first launch a back-
ward propagation towards ft. We follow the same basic approach as the for-
ward propagation, based on the color table Ik and using again our Bayesian
framework defined in Equation 3.3. Note that at each step, we only prop-
agate the reflectance to pixels that have not been assigned yet, leaving the
rest unchanged. Intuitively, this backward propagation helps assign correct
reflectance values to occluded objects in the forward propagation: working
backwards in time, these are visible from the beginning.

This forward-backward propagation scheme is then iterated to complete
the rest of the unassigned pixels. At each iteration, we decrease the thresh-
old for the stopping condition: specifically, we maintain the threshold ratio
α = 80%, but progressively reduce the size of the window WM. We adopt a
three-pass iteration scheme, using M = 30, 20, and 10 respectively. This of-
fers a good trade-off to complete unassigned pixels effectively without need-
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Figure 3.7: Results of the iterative propagation and final completion. Left: Unassigned (black)
pixels after the first iteration. Middle: Reduced number of unassigned pixels after the three
iterations. Right: Final result after reflectance completion.

ing to run our reflectance completion algorithm at each frame. Figure 3.7
(left and middle) shows an example.

residual reflectance completion While we could continue the it-
eration until all pixels are assigned a reflectance value, this may be impracti-
cal or error-prone in some difficult cases. Instead, we rely on Retinex theory
and leverage shading information. We assume C1 shading continuity on the
unassigned regions, an assumption that has been used in previous Retinex-
based works [51, 164, 59]; in our case this works particularly well given the
small size of the remaining unassigned areas (less than 1% in our experi-
ments).

Similar to our reflectance completion step, we impose smooth interpo-
lation on the domain Ω0 of unassigned pixels by applying the following
Poisson equation:

∆Sc = 0 over Ω0, with Sc|∂Ω0 = S1|∂Ω0 (3.11)

where S1 and Sc are the known and the new completed shading values
respectively. The final reflectance values are simply obtained by a pixel-wise
division of color over shading (Figure 3.7, right).

3.7 evaluation

We first evaluate our algorithm by comparing it to a ground truth, synthetic
example. We have rendered a 3D model of St. Basil with dynamic light-
ing and a rotating camera, using Maya. The ground truth reflectance and
shading layers are obtained assigning a constant and a white Lambertian
shader, respectively. Figure 3.8 (left), shows the comparison between the
rendered ground truth sequence and our algorithm; the entire animation is
included in the video. Figure 3.8 (top-right) shows a representative graph
of the evolution of the Local Mean Squared Error (LMSE) with the number
of initial reflectance clusters. We have found that the error is consistently
minimized with 5-10 clusters in all our sequences. With too few clusters,
the algorithm cannot differentiate reflectances properly, whereas a larger
number increases error since the second condition in our high confidence
threshold (Section 3.5.2) can hardly be met. Moreover, in Figure 3.8 (bottom-
right) we compare our reflectance results for chicken against its chromaticity
channels. Our reflectance represents the underlying materials more truth-
fully, while being able to separate black features (no chromaticity) like the
pupils. Figure 3.9 shows some representative clusters of the scenes included
in this work.

Although ours is the first intrinsic decomposition method devised to work
with video sequences, we objectively compare against four other alterna-
tives, by plotting the LMSE with respect to the ground truth for the St.
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Figure 3.8: Left: Comparison between synthetic ground truth for reflectance and shading
(top) and our corresponding results (bottom). Top-right: The evolution of the Local Mean
Squared Error (LMSE) with the number of initial reflectance clusters. Bottom-right: Compar-
ison between chrominance (left) and our reflectance layer (right). Note how the reflectance of
the materials is much better depicted with our method.

Figure 3.9: Representative clusters of the videos included in this work. The parameters of
the segmentation are the same for all the sequences (details in Section 6.5).

Basil sequence. In particular, we first compare against two state-of-the-art
methods devised for single images [197, 57], decomposing each frame of
the video individually. Figure 3.11, left (black and blue lines) shows the re-
sults. Because of motion-induced occlusions and time varying shading, the
results of a frame-by-frame approach are inevitably unstable, with large,
sudden changes between frames. These spikes in error translate into dis-
turbing flickering artifacts even for the best of the two algorithms, as the
accompanying video shows. Our method yields very stable results, with the
lowest LMSE (red line).

The green line (also in Figure 3.11, left) shows the result of applying the re-
cent method by Lang et al. [103] over the frames returned by Zhao’s method.
The resulting error curve is somewhat smoother than frames processed indi-
vidually, indicating overall improved temporal stability (although some of
the largest error peaks remain). However, the overall error increases com-
pared to per-frame decomposition by Zhao’s method. The reason is that
Lang’s method is not well suited for the particular case of intrinsic images
since, as we have seen, this initial per-frame decomposition shows very large
differences between frames, which in turn forces a very aggressive smooth-
ing in the temporal domain. The spatial smoothing that the method imposes
along with its temporal filtering, leads to clear ghosting artifacts and over-
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Figure 3.11: Left: Comparison of LMSE of our algorithm (red line) and three other different
approaches, including two per frame decompositions [197, 57] and the recent method by Lang
et al [103] which enforces temporal stability over Zhao’s per frame result. Our algorithm
yields the most stable results, avoiding flickering, and the lowest LMSE. Right: Different
variations of our algorithm; removing or altering some of its key components leads to temporal
instability and larger error.

blurred edges. Figure 3.10 shows some direct comparisons with our method
for two different sequences.

Figure 3.11, right, shows the LMSE of different variations of our algo-
rithm to highlight the influence of its most relevant components. It can be
seen how performing reflectance completion after each frame (gray line), re-
moving our conservative high-confidence threshold defined in Section 3.5.2
(deep red) or removing optical flow (purple line) increase both the overall
error and the temporal instability of the results.

3.8 results and applications

Figure 3.12 shows additional results (we refer the reader to the accompany-
ing video for the complete set). All our results have been produced automati-
cally, unless user scribbles are shown on the initial frame. Their frame length
varies between 100 and 500 frames, which is in accordance to the average
shot in modern TV and movies [103]. The initial decomposition runs at inter-
active rates. Since we only propagate frames until the local error threshold
is surpassed, we have experienced no error accumulation or temporal drift
in any of the videos tested. Note also how in the chicken sequence parts of
the body disappear and appear again, which our algorithm handles grace-
fully thanks to its forward-backward structure. In objects, the camera loops
around the scene; notice the temporal coherence of the reflectance images,
including the first and last frames of the sequence (leftmost and rightmost
frames in the image). In the video, Squirrel presents a particularly challeng-
ing case including a furry animal, moving shadows and motion blur, but
our algorithm still yields good results.

For one frame in a video sequence at 800 × 600 spatial resolution, our al-
gorithm takes slightly over one minute using a four-threaded unoptimized
implementation on a standard PC. Automatic decomposition and reflectance
clustering of the first frame requires about 30 seconds, plus 20 seconds for
the forward propagation in the first iteration and 5 seconds for each re-
flectance completion and residual reflectance completion steps. Since the
propagation for each pixel is neighbor-independent, the algorithm is suit-
able for parallel processing and could be significantly accelerated on a GPU.
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Moreover, our intrinsic video decomposition method can be used as a
basic platform for video editing applications. Here we show some examples,
and refer the reader again to the Supplementary Material2.

Video segmentation Available video segmentation methods rely heavily
on local color and shape information; therefore such methods usually fail to
track an object in natural videos where illumination or shape may change.
Our algorithm can be used for object segmentation based on propagated
clustered reflectance information. Since the reflectance propagation effectively
removes the shading component, it is more robust in case of changes in il-
lumination. Moreover, our method does not rely on local statistics, which
makes it also robust in case of fast topology changes of the segmented ob-
jects. Figure 3.14 shows the results for five frames of the nemo sequence,
equally spaced 225 frames apart, compared with the result using the popu-
lar video SnapCut [7] and the online efficient hierarchical graph-based video
segmentation (EHGV) tool [64]. For a fair comparison with these methods,
in the SnapCut example the first frame has been manually labeled as fore-
ground and background, in order to provide visually comparable results,
while for EHGV we use the automatic cluster result directly. It can be seen
how both SnapCut and EHGV progressively accumulate error and com-
pletely miss at least one of the fishes in the end. In contrast, our method
improves performance in the presence of fast motion, dramatic changes in
shape, and similar color between foreground and background objects, even
over a large number of frames, without error drift.

Material editing We can re-render the surface materials by manipulating
the shading layer, defining a simple mapping function between the original
and the new shading. The user only needs to define a sparse set of control
point in the shading grayscale space, and the mapping function is obtained
by cubic interpolation. Figure 3.13, top-left, shows how diffuse surfaces can
be made to appear shiny by applying the function shown.

Color transfer Given a source image of different scene, our intrinsic de-
composition allows us to efficiently transfer its color and tone to a target
video, by simply performing histogram matching on the reflectance layers
of both the source image and the first frame of the video. Our algorithm effi-
ciently propagates this new reflectance information; multiplying by the cor-
responding shading images yields the final color-transferred video. Given
our temporally consistent cluster information, we can further composite the
original foreground object onto the new background (Figure 3.13, bottom-
left).

Recolorization By adding simple scribbles on the input image (Figure
3.13, top-right), users can define a reflectance transfer function between the
input and the target reflectance values. In our implementation, the target
reflectance values are defined by the color of the scribbles. For each pixel
in any subsequent frame, this transfer function is applied to the original
reflectance. Note that similar effects have been achieved using propagation
techniques [110, 185], although here we directly manipulate the reflectance
layer.

Stylization We can easily achieve interesting non-photorealistic results
by manipulating each intrinsic layer separately. Figure 3.13, bottom-right,
shows two different depictions of the same video, increasing and decreas-
ing the saturation of the reflectance layer, respectively, while flattening the
shading layer. An edge layer has been subsequently added to enhance the
effect.

2 http://webdiis.unizar.es/~elenag/projects/SIG2014_intrinsicvideo/

http://webdiis.unizar.es/~elenag/projects/SIG2014_intrinsicvideo/
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3.9 discussion

In summary, we have presented a novel approach for the challenging prob-
lem of intrinsic video decomposition, as well as several example applica-
tions in video editing. Our method is temporally coherent, does not impose
a large memory footprint, and does not require heavy user interaction. We
believe this is the first work successfully addressing this problem, without
imposing any restrictions on the input videos.

Our approach is not free of limitations. Working on a per-frame basis al-
lows our method to be very light on memory requirements and processing
time; however it is currently not optimized for speed, and it still does not
work in real time. Similar to other video editing approaches, different shots
need to be processed separately: if the content between shots varies dras-
tically (i.e., two completely different scenes in a movie), our propagation
scheme cannot guarantee good results. Last, if the initial frame is very dark
or very saturated, it may be hard to find meaningful reflectance clusters.
Despite this, we hope our work inspires both future research on intrinsic de-
composition of video sequences, as well as novel video editing techniques
that take advantage of the individual manipulation of reflectance and shad-
ing information.
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appendices

3.a retinex-based optimization

We summarize here the main aspects of the paper by Zhao and colleagues [197]
relevant to our work. The problem of intrinsic decomposition of a single
image is posed as an optimization. Working in log-space, the problem is
defined as ip = sp + rp, where ip = log(Ip), rp = log(Rp) and sp = log(Sp) (Ip,
Rp and Sp are the image, reflectance and shading pixel values, according to
our Equation 3.1). The following function is then minimized:

arg min
s

E(s) = λlEl(s) + λrEr(s) + λaEa(s) (3.12)

where λl , λr and λa are positive weights (set to 1, 10000 and 1000 respec-
tively), El(s) represents the common Retinex constraint minimizing the dif-
ferences in shading and reflectance between adjacent pixels, Er(s) is a non-
local albedo constraint and Ea(s) is a normalization factor. Explicitly:

El(s) = ∑
(p,q)∈N

[
(sp − sq)2 + w(p,q)(rp − rq)2

]
(3.13)

where N denotes the set of all neighboring pairs of pixels and w(p,q) is the
balance factor introduced in Equation 3.2. The next term is:

Er(s) = ∑
Gi

r∈Γr

∑
(p,q)∈Gi

r

(
rp − rq

)2 (3.14)

where Gi
r is a set of pixels with similar albedo, and Γr is the set of pixel

groups previously detected to share the same albedo. Last, the normaliza-
tion term is:

Ea(s) = ∑
p∈Ga

(sp − 1)2 (3.15)

where Ga contains the brightest pixel(s).





4I N T R I N S I C L I G H T F I E L D D E C O M P O S I T I O N

In this chapter, we present the first method to automatically decompose a
light field into its intrinsic shading and albedo components. Contrary to pre-
vious work targeted to 2D single images and videos, a light field is a 4D
structure that captures non-integrated incoming radiance over a discrete an-
gular domain. This higher dimensionality of the problem renders previous
state-of-the-art algorithms impractical either due to their cost of process-
ing a single 2D slice, or their inability to enforce proper coherence in addi-
tional dimensions. We propose a new decomposition algorithm that jointly
optimizes the whole light field data for proper angular coherency. For effi-
ciency, we extend Retinex theory, working on the gradient domain where
new albedo and occlusion terms are introduced. Results show our method
provides 4D intrinsic decompositions difficult to achieve with previous state-
of-the-art algorithms.

E. Garces, J. I. Echevarria, W. Zhang, H. Wu, K. Zhou & D. Gutierrez
Intrinsic Light Fields

eprint arXiv:1608.04342, 2016.

4.1 introduction

Intrinsic scene decomposition is the problem of separating the integrated
radiance from a captured scene, into a physically-based and more meaning-
ful reflectance and shading components, so that Scene = Albedo × Shading;
enabling quick and intuitive edits of the materials or lighting of a scene.

However, this decomposition is a very challenging, ill-posed problem.
Given the interplay between the illumination, geometry and materials of
the scene, there are more unknowns than equations for each pixel of the
captured scene. To mitigate this uncertainty, existing intrinsic decomposition
works assume that some additional properties of the scene are known. How-
ever, the prevailing goal is always the same: the gradients of the depicted
scene need to be classified as coming from a variation in albedo, shading,
or both. In this work, we build on classical theories of Retinex to obtain bet-
ter predictors of these variations leveraging information from the light field
data.

On the other hand, light field photography is becoming more popular,
as multi-view capabilities are progressively introduced in commercial cam-
eras [121, 149], including mobile devices [178]. Such captured light fields
are 4D structures that store both spatial and angular information of the ra-
diance that reach the sensor of the camera. This means a correct intrinsic
decomposition has to be coherent in the angular domain, which increases
the complexity with respect to 2D single images and 3D videos (x, y, t). Not
only because of the number of additional information to be processed, but
also because of the kind of coherence required. To the best of our knowledge,
no intrinsic decomposition method exists suited to handle these particulari-
ties.

A naïve solution to intrinsic light field decomposition would be to apply
any state-of-the-art single image algorithm to each view of the light field
independently. However, due to the extensive computational time that these

63
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algorithms require (Bell et al. [13] takes around 10 minutes for a 400× 400
image), this is not an option given a typical light field contains around 9× 9
views. And even then, angular coherence across views would not be guaran-
teed. Another approach could be to extend intrinsic video decompositions
to 4D light field volumes, as these techniques rely on providing an initial
solution for a 2D frame (usually the first), which is then propagated along
the temporal dimension. However, the propagation mechanism is designed
to ensure smooth temporal transitions in a single dimension, assuming a
normal playback of the video. While the 4D structure of a light field would
allow its different views to be “stacked” and processed as a single video
sequence, its angular dimensions cannot be assumed to be explored in a sin-
gle way. Thus, all possible sequences should be taken into account, making
this approach highly inefficient.

Therefore, we propose a new decomposition algorithm that jointly opti-
mizes for the whole light field data efficiently, is scalable, and maintains
proper angular coherency. With this work, our goal is not to obtain the best
decomposition for each single view, but the most coherent one, in a prac-
tical way. This not only keeps adding to the limited set of tools for light
field editing [80, 194], but paves the way for other applications that require
robust segmentation or selection of the same object and areas across all the
different views. Our algorithm has the following characteristics:

• It is devised with 4D light field data in mind, enforcing angular coher-
ence in the results.

• It is computationally efficient, while working with the whole 4D data
volume.

• It builds on existing Retinex approaches, extending them with addi-
tional terms on the formulation.

We show results both with synthetic light fields (with ground truth ref-
erences for reflectance, shading and depth), and real world light fields cap-
tured with a Lytro camera. We show how our method outperforms previous
approaches when used with light field data, and is robust even in the pres-
ence of imperfect depth information.

4.2 related work

Intrinsic decomposition of the shading and albedo components of an image
is a long-standing problem in computer vision and graphics since it was
formulated by Barrow and Tenembaum in the 70s [10]. We review previous
intrinsic decomposition algorithms based on their input, and then briefly
cover related light field processing.

single image . Several works rely on the original Retinex theory [102] to
estimate the shading component. By assuming that shading varies smoothly,
either a pixel-wise [173, 197] or cluster-based [57] optimization is performed.
Clustering strategies have also been used to obtain the reflectance compo-
nent, e.g. assuming a sparse number of reflectances [59, 164], using a dic-
tionary of learned reflectances from crowd-sourcing experiments [13], or
flattening the image to remove shading variations [17]. Alternative meth-
ods require user interaction [22], jointly optimize the shape, albedo and
illumination [8], incorporate priors from data driven statistics [198], train
a Convolutional Neural Network (CNN) with synthetic datasets [133], or
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use depth maps acquired with a depth camera to help disambiguate shad-
ing from reflectance [9, 28, 104]. For efficiency, our work is also based on the
Retinex theory, with 2D and 4D scene-based heuristics to classify reflectance
gradients.

multiple images and video. Several works leverage information from
multiple images of the same scene from a fixed viewpoint under varying il-
lumination [182, 70, 98, 168]. Laffont et al. [97] coarsely estimate a 3D point
cloud of the scene from non-structured image collections. Pixels with similar
chromaticity and orientation in the point cloud will be used as reflectance
constraints within an optimization. Assuming outdoor environments, the
work of Duchene et al. [38] estimates sunlight position and orientation and
reconstructs a 3D model of the scene, taking as input several captures of the
same scene under constant illumination. Although a light field can be seen
as a structured collection of images, we avoid the additional work required
to build and process such proxy 3D models, by directly leveraging the 4D
structure for a more effective and efficient approach.

video. A few methods dealing with intrinsic video have been recently
presented. Ye et al. [191] propose a probabilistic solution based a casual-
anticasual, coarse-to-fine iterative reflectance propagation. Bonneel et al. [21]
present an efficient gradient-based solver which allows interactive decompo-
sitions. Kong et al. [94] rely on optical flow to estimate surface boundaries
to guide the decomposition. Recently, Meka et al. [127] present a novel vari-
ational approach suitable for real-time processing, based on a hierarchical
coarse-to-fine optimization. While these methods work in a 3D domain, they
are devised to keep a smooth coherency in the temporal dimension, which
is assumed to be navigated in a continuous way. 4D Light fields, however,
need to be consistent in all angular dimensions, without any assumption
about the way they are going to be explored.

light field editing . Our work is also related to papers that extend
common tools and operations for 2D images to 4D light fields. This is not
a trivial task, given again the higher dimensionality of light fields. Jarabo
et al. [80] present a first study to evaluate different light field editing in-
terfaces, tools and workflows, this study is further analyzed by Masia et
al. [122], providing a detailed description of subjects’ performance and pref-
erences for a number of different editing tasks. Global propagation of user
strokes has also been proposed, using a a voxel-based representation [155],
a multi-dimensional downsampling approach [81], or preserving view co-
herence by reparameterizing the light field [2], while other works focus on
deformations and warping of the light field data [18, 27, 196]. Cho et al. [31]
utilize the epipolar plane image to extract consistent alpha mattes of a light
field. Guo et al. [65] stitch multiple light fields via multi-resolution, high
dimensional graph cuts. There are also considerable interests in recovering
depths from a light field. Existing techniques exploit defocus and correspon-
dence depth cues [172], carefully handle occlusions [179], or use variational
methods [180]. As most of these works, we also rely on the epipolar plane
image for implicit and efficient multi-view correspondences and processing.
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4.3 formulation

To represent a light field, we use the two-plane parametrization on ray space
L(x, y, q, t), which captures a light ray passing through two parallel planes:
the sensor plane Πqt, and the virtual camera plane or image plane Ωxy.
Analogous to its 2D image counterpart, the problem of intrinsic light field
decomposition can be formulated as follows: for each ray of the light field
L, we aim to find its corresponding reflectance and shading components R
and S, respectively.

L(x, y, q, t) = R(x, y, q, t)× S(x, y, q, t) (4.1)

Instead of solving for single rays directly, the problem can be formulated in
the gradient domain for the image plane Ωxy:

∇L(x, y, q∗, t∗) = ∇R(x, y, q∗, t∗) +∇S(x, y, q∗, t∗) (4.2)

more compactly ∇l = ∇r +∇s. Where l, r and s denote the single views
for each {q∗, t∗} ∈ Πqt for each input view l, its reflectance r and shading
s in log spaces. Note that we denote single views computed in log domain
with lowercase, while uppercase letters denote the whole light field in the
original domain.

The classic Retinex approach [102] proposes a solution to this formulation
by classifying each gradient as either shading or albedo. As seen before, dif-
ferent heuristics have been proposed over the years, with the simplest one
associating changes in albedo with changes in chromaticity. Although this
provides compelling results for some scenes, it still has the following limita-
tions: chromatic changes do not always correspond to albedo changes; the
solution is very sensitive to high frequency texture; and more importantly it
does not take into account the effects of occlusion boundaries, where shad-
ing and albedo vary at the same time.

4.4 our method

4.4.1 Overview

Our approach to the problem of intrinsic light field decomposition is based
on a multi-level solution detailed in Algorithm 2: In a first step, we perform
a global 4-dimensional l1 filtering operation, which generates a new version
of the light field with reduced high frequency textures and noise, to promote
relevant gradients and edges, as well as improved angular coherency. The
resulting light field, which we call L̂, will serve to initialize a first estima-
tion of the reflectance R0 and shading components S0 (Section 4.4.2). These
initial estimations will then be used to compute the albedo and occlusion
cues needed for the actual intrinsic decomposition, which is done locally
per view (Sections 4.4.3.1 and 4.4.4), benefiting from the previous global
processing of the whole light field volume. A final global 4D l1 filtering
operation (Section 4.4.5) performed over the reflectance finishes promoting
angular coherency and stability, as can be seen in the results section and the
Supplementary Material.

4.4.2 Initialization

Inspired by the work of Bi et al. [17], we noticed that better predictions of
the albedo discontinuities can be done by performing an initial l1 filtering of
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Algorithm 2 Intrinsic Light Field Decomposition
1: Input: Light field L(x, y, q, t)
2: . Initialization (Section 4.4.2)
3: L̂← TVL1(L, β = 0.05)
4: S0 ← ||L̂||2
5: R0 ← L̂/S0
6: . Global Analysis (Sections 4.4.3.1 and 4.4.4)
7: ωa ← getAlbedoTh(L̂, R0)
8: ωocc ← getOcclusionGradient(Ldepth)
9: . Local intrinsic decomposition

10: Rg1, S1 ← G(L̂, ωa, ωocc) . Note that Rg1 and S1 are both single channel
11: . Global coherency (Section 4.4.5)
12: R̂1 ← TVL1(Rg1, β = 0.05)
13: S f ← ||L̂||2/R̂1
14: R f ← L/S f
15: Result: R = R f (x, y, q, t), S = S f (x, y, q, t)

the light field volume, since it enhances edges and removes noise that could
introduce errors in the estimation of gradients. In particular, we regularize
the total variation (TV-l1):

min
L̂

1
2
‖L̂− L‖2

2+β‖L̂‖1 (4.3)

As a result, from the original light field L, we obtain a filtered version L̂,
close to the original input but with sharper edges due to the use of l1 norm
on the second term. Additionally, the use of this norm effectively removes
noise while prevents smoothing out other important features. The regular-
ization factor β controls the degree of smoothing, where in our experiments
β = 0.05.

Working with light fields means that we need to solve this multidimen-
sional total variation problem in 4D. Since efficiency is key for our method
to be practical, we use the ADMM solver proposed by Yang et al. [189].
ADMM combines the benefits of augmented Lagrangian and dual decom-
position methods. It decomposes the original large global problem into a
set of independent and small problems, which can be solved exactly and
efficiently in parallel. Then it coordinates the local solutions to compute the
globally optimal solution.

Figure 4.1, shows the difference in angular coherency and noise between
the input L, a filtered version obtained from processing each single view in-
dependently, and our L̂ obtained from the described global filtering. From L̂,
we compute the initial shading as, S0 = ||L̂||2. This is a convenient step to ob-
tain a single-channel version of the input image, with other common trans-
formations like the RGB average or the luminance channel from CIELab [57]
providing similar performance. Taking S0 as baseline, we compute the initial
RGB reflectance R0 simply from L̂/S0. It is important to note that S0 and R0
serve only as the basis over which our heuristics are applied to obtain the
final cues to solve for the actual intrinsic decomposition (Equation 4.4). Fig-
ure 4.2 shows the impact of this l1 regularization on the detection of albedo
variations.
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original epi

TVL1 global

TVL1 per view

Figure 4.1: Visualization of the horizonal epi view for the red scanline in Figure 4.2 (a).
From top to bottom: the epi from the original light field; the epi after applying TVL1 filter
to each view separately; the same epi after applying a 4D TVL1 filter to the whole light
field volume using our approach. We can observe (by zooming in the digital version), areas
with very similar colors are flattened, while sharp discontinuities are preserved, effectively
removing noise and promoting angular coherence.

(a) (b) (c) (d)

Figure 4.2: (a) Central view of an input light field. (b) Albedo variations computed as the an-
gle between RGB vectors for neighboring pixels Li , Lj L̂i , Lj, from the original light field L. (c)

Albedo variations obtained from our initial reflectance estimation, Ri
0, Rj

0
̂

Ri
0, Rj

0. (d) Albedo
variation from the chromaticity norm, ||L̂i − L̂j||, used by Zhao et al [197]. Our approach
(c) yields cleaner gradients than (b), and captures more subtleties than (d). Note for example
the green leaves at the right of the image. Every image is normalized to its maximum value.

4.4.3 Intrinsic Estimation

As motivated before, for our efficiency requirements we follow a Retinex
approach. We build on Zhao’s closed-form formulation, extending it to take
into account our albedo and occlusion cues obtained from the 4D light field
volume. For each view l of the light field, the system computes the shading
component s by minimizing the following equation:

min
s

λ1 f1(s) + λ2 f2(s) + λ3 f3(s) (4.4)

where f1 is the Retinex constraint, f2 is an absolute scale constraint, and f3
is a non-local texture cue; and λ1, λ2, and λ3 are the weights which control
the influence of each term, set to λ1 = 1, λ2 = 1 and λ3 = 1000. In this work
we extend f1, so please refer to the original paper [197] for the full details
of f2 and f3.

4.4.3.1 Retinex-Based Constraint

The original Retinex formulation assumes that while shading varies smoothly,
reflectance tends to cause sharp discontinuities, which can be expressed as:

f1(s) = ∑
i,j∈Nxy

(∇s2
ij + ωa

ij∇r2
ij) (4.5)

where Nxy is the set of pairs of pixels that can be connected in a four-
connected neighborhood defined in the image plane Ωxy, and ωa

ij is com-
monly defined as a threshold on the variations in the chromatic channels
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(Section 4.4.4). Following Equation 4.2, we define the following transforma-
tion, needed to solve Equation 4.4.

∇r = ∇l̂ −∇s (4.6)

However, we found that this equation ignores the particular case of oc-
clusion boundaries, where shading and reflectance may vary at the same
time. In order to handle such cases, we introduce a new additional term
ωocc

ij , which has a very low value when an occlusion is detected, so it does
not penalize the corresponding gradients (more details in Section 4.4.4):

f1(s) = ∑
i,j∈Nxy

ωocc
ij (∇s2

ij + ωa
ij∇r2

ij) (4.7)

We define as G the function that takes the whole light field and the global
cues to obtain the corresponding shading and reflectance layers:

G(L̂, ωa, ωocc) = (S1, Rg1) (4.8)

It is important to note that s has a single channel (an interesting future
work would be to lift this restriction to allow colored illumination), so Equa-
tion 4.6 is also a single channel operation, where l̂ is ||l̂||2. Therefore, Equa-
tion 4.4 yields single channel shading s, and reflectance rg = ||l||2−s in
log-spaces. Then, S1 and Rg1 are:

∀q, t ∈ Πqt
S1(x, y, q, t) = es

Rg1(x, y, q, t) = erg
(4.9)

4.4.4 Gradient Labeling

In the following, we describe our extensions to the classic Retinex formula-
tion: the albedo and occlusion terms in Equation 4.7. Note that this labeling
is independent from solving the actual system (Equation 4.4), so each cue
is computed in the most suitable color space, or additional available dimen-
sions like depth.

4.4.4.1 Albedo Gradient (ωa)

Albedo gradients are usually computed based on the chromatic informa-
tion in CIELab color space. However, as we have shown, our initial RGB
reflectance R0 is better suited for this purpose, since it shows more relevant
albedo variations. Staying in RGB space, we choose to analyze albedo based
on Omer and Werman’s color lines model [141], which states that if the RGB
vectors of two neighboring pixels {i, j} are co-linear, their albedo is assumed
to be constant. We thus compute our weights as:

ωa
ij =

{
0, if Ri

0, Rj
0
̂

Ri
0, Rj

0 > 0.04

1, otherwise
(4.10)

Setting ωa
ij = 0 in Equation 4.7, means that such gradient comes from albedo,

so the gradient of the shading should be smooth. We found a difference of
0.04 radians works well in general, producing good results. We can see an
example in Figure 4.2, where our measure is compared to the original Zhao’s
estimator, which only used Euclidean distances.
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Our proposed heuristic works reasonably well when there is color in-
formation available, however it fails when colors are close to pure black
or white. Thus, we choose to detect them independently and use them as
similar cues as for regular albedo, so the final shading is not affected. We
propose an approach based on the distance from a color to the black and
white references in CIELab space (given its better perceptual uniformity
than RGB), which gives a measure of the probability of a color being one of
them.

From the light field L̂, we compute the perceptual distance of each pixel
to the white color as Dw

i = ‖L̂i −w‖2
2, and analogously the distance to black

Db
i ; where w and b may change depending on the implementation. With

that, we compute the probability of a pixel of being white or black as Pw
i =

exp(−Dw
i /Dw

b ), with Dw
b being the maximum distance in CIELab space (see

Figure 4.3). Then, we label the gradients as:

gw
ij =

{
0, if (Pw

i ≥ τ‖Pw
j ≥ τ1)∧ (|Dw

i −Dw
j |> τ2)

1, otherwise
(4.11)

where τ1 = 0.85 and τ2 = 0.05. And we impose the additional condition
that it must be a real gradient, so |Dw

i − Dw
j |> τ2 avoids marking pixels

inside uniform areas. The black albedo labeling gb
ij is analogously formu-

lated. τ1 and τ2 were set empirically, but work well for all tested scenes.
Then, we compute the final albedo threshold for each gradient as ωa

ij =

max(ωa
ij, gw

ij , gb
ij). The result of this step is a binary labeling, where each gra-

dient is labeled as albedo or shading change (Figure 4.3).

4.4.4.2 Occlusion Gradient (ωocc)

Previous work assume that discontinuities come from changes in albedo
or changes in shading, but not both. However, we found they can actually
occur simultaneously at occlusion boundaries, becoming an important fac-
tor in the intrinsic decomposition problem. Our key idea then is to detect
the corresponding gradients and assign them a low weight ωocc

ij in Equa-
tion 4.7, so larger changes are allowed in shading and albedo at the same
time. Contrary to single 2D images, 4D light fields provide several ways to
detect occlusions, like analyzing the epipolar planes [? 180] or using defo-
cus cues [179]. In the following, we describe a simple heuristic assuming an
available depth map [171], although it can be easily adjusted if only occlu-
sion boundaries are available:

ωocc
ij =

{
0.01, if |Di − Dj|> 0.02

1, otherwise
(4.12)

where the depth map D is normalized between 0 and 1. Note that we can-
not set ωocc

ij = 0 because it would cause instabilities in the optimization.
Figure 4.4 (c), show the effect of including this new term.

4.4.5 Global Coherency

After solving Equation 4.8 we get S1 and Rg1. Given the way normaliza-
tion of shading values is performed in Equation 4.4, we found some views
may become a bit unstable, affecting the angular coherence of the results.
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A straightforward approach could be to apply another 4D l1 filter (Equa-
tion 4.3) over S1. But, this tends to remove details, wrongly transferring
them to the reflectance producing an over-smoothed shading layer and a
noisier reflectance one.

We found filtering Rg1 provides better results. Because Rg1 already fea-
tures uniform regions of color, the 4D l1 filter finishes flattening them for
enhanced angular coherence, obtaining R̂1. Again, we use β = 0.05. From
there, we compute our final smooth and coherent shading S f as ||L̂||2/R̂1.
And the final RGB reflectance as R f = L/S f .

4.5 results and evaluation

We show the whole pipeline in Figure 4.5. The central view is shown after
each step of the Algorithm 2, plus the whole light field is shown in the
Supplementary Material [1]. The input light field L, the filtered version L̂
and the normalized version ||L̂2|| are shown in Figures (a) to (c). We observe
that the variation between the original light field L and the filtered one
L̂ is very subtle. In particular, in this figure, it is more noticeable in very
dark regions where black gradients become grayish. This is favorable to the
gradient-based solver we use to solve Equation 4.4, which is very sensitive
to very dark areas. The output from Equation 4.8 is shown in Figures (d) and
(e), and, although the shading looks pretty consistent in one view, it lacks
of angular consistency when the whole volume is visualized (as shown in
the Supplementary). Finally, from the filtered reflectance R̂g1 (f) and the
original light field L, we are able to recover the coherent shading S f (g)
and reflectance layers R f (h). Note that the initial filtering operation also
removes small details in shadows and texture, which are recovered in the
reflectance layer. This is favorable if the details removed are high frequency
texture, as we can see in Figure 4.6 (top), but may also cause small remnants
of shading in the reflectance, as we can see in Figure 4.5 (h).

Figures 4.6 and 4.7 show several results using our method. We refer the
reader to the Supplementary Material [1] to visualize the whole set of light
fields with ground truth data and comparisons, where the critical improve-
ment in angular coherence over state-of-art methods can be fully appreci-
ated. All our results have been generated automatically with the fixed pa-
rameters given in the text.

Figure 4.6 shows two synthetic scenes of our dataset along with compar-
isons with the works of Zhao et al. [197] and Bell et al. [13]. In the case
of Bell’s method, it is based on a fully connected conditional random field,
which produces a dense graph connecting all pixels in the image. This strat-
egy does not converge to a coherent solution even for adjacent views of the
light field, which translates into obvious flickering artifacts. Moreover, the
reported computational cost of the method is of the order of 10 minutes for
a moderate-size image, whereas our method, which is based on a much sim-
pler linear system, performs in about 10 seconds. Since all the light fields
shown here have 9×9 views, the efficiency of our method becomes crucial
to make the method practical. Zhao’s method, as can be observed in the
accompanying videos, is not free of angular flickering, which is eliminated
almost completely with our new albedo and occlusion gradients, plus 4D
filtering.

Intrinsic light field decomposition extends the range of edits that can be
performed to a light field with available tools [80, 122]. Figure 4.8 shows
two examples, where simple albedo and shading edits allow to change the
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Figure 4.7: Results of our method on three real light fields taken with the LytroTM cam-
era [80]. We show the decomposition for two opposite views. Please refer to the videos in the
Supplementary Material [1].

(a) (b)

Figure 4.8: Editing operations performed by modifying the shading (a) and the albedo (b)
layers independently. Check the accompanying videos to see the complete edited light field.

appearance coherently across the angular domain, something very difficult
to achieve in RGB space.

4.6 conclusions and future work

We have presented the first method for intrinsic light field decomposition,
which follows up existing approaches for single images and video, enabling
practical and intuitive edits in 4D. Our method is based on Retinex formula-
tion, reviewed and extended to take into account the particularities and re-
quirements of 4D light field data. We have shown results on both synthetic
and real datasets, which compare favorably against existing state-of-the-art
methods, as shown by the accompanying videos in the supplemental mate-
rial. Our method is efficient (a crucial aspect given the higher dimensionality
of light fields), and our formulation still produces high quality results even
in the absence of accurate depth information.
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We have shown a straightforward editing example, but it would be inter-
esting to see other applications enabled by our enhanced angular coherency,
which will help in quick selection of objects or propagation of edits across
the whole set of views.

For our albedo and occlusion cues, we currently rely on simple thresholds.
A more sophisticated solution could make use of multidimensional Condi-
tional Random Fields [79]. Despite the flexibility of our formulation with
respect to depth data, a current limitation is that its quality can directly af-
fect the final results. More sophisticated occlusion heuristics could combine
information from the epipolar planes to make this term more robust.

Finally, to reduce the complexity of the intrinsic decomposition problem,
some simplifying assumptions are usually made, with the most relevant
ones about the color of the lighting (white light) and the material proper-
ties of the objects in the scene (non-specular lambertian surfaces). In this
work we focused on coherency over subtleties in the single-view decompo-
sitions. However, we believe light field data captures rich radiometric scene
information that will help lifting such limiting assumptions in the future.





Part III

S T Y L E I N A RT I S T I C S C E N E S

In this part we focus on illustration art, clip art in particular.
We present a feature-based representation of style for this kind
of visual data, and propose a similarity metric which allows us
to compare two pieces of vector art based on style. This metric
is computed based on the human perception of style leveraging
crowdsourcing experiments. We show several applications of this
metric such as style-based image retrieval or mash-up creation;
and present an exploratory interface which allows to efficiently
navigate through massive amounts of this kind of datasets taking
into account both semantic labeling and style.





5A S I M I L A R I T Y M E A S U R E F O R I L L U S T R AT I O N S T Y L E

In this chapter we present a method for measuring the similarity in style
between two pieces of vector art, independent of content. Similarity is mea-
sured by the differences between four types of features: color, shading, tex-
ture, and stroke. Feature weightings are learned from crowdsourced experi-
ments. This perceptual similarity enables style-based search. Using our style-
based search feature, we demonstrate an application that allows users to
create stylistically-coherent clip art mash-ups.

This work is published in ACM Transactions on Graphics and presented at
SIGGRAPH 2014. It was partially developed during a three-month intern-
ship at Adobe, Seattle (USA).

E. Garces, A. Agarwala, D. Gutierrez & A. Hertzmann
A Similarity Measure for Illustration Style

ACM Transactions on Graphics (SIGGRAPH), Vol.33 (4), 2014

5.1 introduction

Vector art is one of the most common forms of two-dimensional computer
graphics. Clip art libraries contain hundreds of thousands of pieces of vector
art designed to be copied into documents and illustrations. These collections
are typically tagged by object categories; searches for common objects (e.g.,
“dog”) yield huge numbers of results. However, there is another aspect of
vector art that is currently much harder to search for: style. Clip art comes
from many artists and many sources, in a vast range of visual styles, includ-
ing sketches, woodcuts, cartoon drawings, and gradient-shading; some are
very cartoony and whimsical, whereas others are more professional-looking.
Because clip art comes from heterogeneous sources with very inconsistent
tagging, these datasets lack any reliable annotation of artist or style.

While simulation of depiction style has long been a focus of non-photorealistic
rendering [60], little attention has been paid to understanding style, and no
good tools exist for stylistic search or analysis in clip art datasets. Indeed, it
is fundamentally difficult to define a simple function that describes these dif-
ferent styles. But, with the recent dramatic growth in the quantity of visual
content available online and the rising popularity of remixed and mashup
art [105], stylistic search could be valuable for many design applications.

This chapter presents a style similarity function for clip art. That is, given
two pieces of clip art, our function computes a real-valued measure of their
style similarity, independent of content. We demonstrate style-based search,
where clip art search results are sorted by similarity to a query artwork.
We describe a clip art mashup application that uses style-based search to
help users combine multiple pieces of stylistically-coherent clip art into a
composition. For example, if a user has already placed a house and tree
in a sketchy pen style onto the canvas, and then searches for a dog, our
application re-orders search results so that dogs of a similarly sketchy pen
style are shown first.

We compute our style distance function using a combination of crowd-
sourcing and machine learning. We gathered a stylistically-diverse collec-
tion of clip art. Then, for a large selection of clip art triplets, we gathered

81
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Color Shading

Texture Stroke

Figure 5.1: For each feature category we show two pieces of clip art whose style is very differ-
ent. The color example contrasts a colorful illustration from a monochrome one. The shading
example shows a gradient-shaded illustration next to one with regions of constant color. The
texture example shows an image with artistic patterns next to a woodcut illustration with
more stochastic patterns. Finally, the stroke example pairs a sketchy illustration with lines of
varying width next to smooth contours of constant width.

Mechanical Turk (MTurk) ratings of the form “Is clip art A more similar
in style to clip art B or C?” We then learned a model of stylistic similarity
from these ratings. The model is based on a set of features that we observe
to be descriptive of the style of vector art. In total we compute 169 fea-
tures in four categories: color, shading, texture, and stroke. The similarity
function is a weighted L2 distance of the feature vectors; the weights are
learned by maximizing the probability of the MTurk ratings. Learning with
a sparsity prior produces a final weighting with 78 non-zero weights. We
numerically evaluate the performance of our distance function on separate
test data. We also perform user studies in which workers create mash-ups
with and without style-based search. We find that raters judge mash-ups cre-
ated with style-based search to be more stylistically coherent and generally
preferable.

5.2 related work

Though there has been considerable effort in computer graphics on stylistic
rendering, there has been less work in the analysis of artistic style. Willats
and Durand [184] provide an overview of the elements of pictorial style
found in 2D illustrations. One approach to the algorithmic analysis of style
is to learn a generative model; that is, a model that learns to create new
examples of a style from scratch, such as generating new typefaces [175],
and learning 3D hatching styles from examples [86]. A second class of ap-
proaches transfer styles from examples, such as transferring painting styles
[73], photographic styles [6], or curve styles of 2D shapes [109]. Our work
focuses on a different problem, namely, perceptual measures of stylistic sim-
ilarity, rather than synthesis. To our knowledge, there is no previous work
on perceptual similarity of vector art. Moreover, the above methods are not
directly applicable. A generative model could theoretically be used to com-
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pute stylistic similarity; however, creating a generative model of clip art style
from examples would be extraordinarily difficult.

Though image search and retrieval is a standard problem in vision and
image analysis [33], recognition based on style is rare. Murray et al. [129]
classify photographs according to a few photographic styles. There are more
examples in other domains; style similarity functions are used to recom-
mend music [3] and films [11] based on examples of preferences. Shamir et
al. [160] describe style recognition for paintings. Doersch et al. [36] recog-
nize the style of street scenes that visually distinguish different cities. Our
method instead focuses on styles of vector art.

The most related work to ours is a method for retrieval of sketches of
similar style from an art dataset [77]. They propose features computed from
stroke contours which are first extracted from the image to describe the style
of line drawings. Their method only applies to black and white line draw-
ings, whereas our method can also measure differences in color, shading,
and texture. Also, our technical approach is different in that we collect data
on the human perception of style, and fit our style similarity function to this
data.

Finally, our mashup application is similar in motivation to recent work
that supports search of photo databases for visually consistent content that
can be combined into composites. Photo Clip Art [101] find objects in photos
whose lighting and perspective are consistent with a target scene, while
Sketch2Photo [29] generates photo composites from sketches while ensuring
that the photo elements are visually consistent.

5.3 clip art style features

The first step in building a style similarity function is to define the numerical
features that identify and distinguish clip art style. Although it is difficult
to specify the exact characteristics that define style, there are a series of
pictorial cues that can be used to differentiate one style from another. These
cues include basic visual attributes like color, shading, and texture, as well
as the actual marks such as lines, strokes, and regions [39, 184]. Note that
we do not need to decide a priori how these features differentiate style, or
their relative weights; our goal is to create an overcomplete set of features
that can be used by the learning algorithm to fit our similarity function to
data. Later, we will see that some features are completely removed by L1

regularization (Section 5.6.1).
Our features are computed on bitmaps rather than vector descriptions

(e.g., SVG) of clip art for two reasons. First, computing on bitmaps gives us
the flexibility to include clip art whether or not a vector version is available.
Second, we observed a surprising variety of vector descriptions of similar
content. For example, a simple black stroke could be defined with line, path,
or polygon primitives, or even worse, be the result of adding a smaller fore-
ground region to a black background region. Converting these representa-
tions into a consistent vector format is a research challenge by itself.

We identify four main aspects which we believe best characterize styles
in clip art: color, shading, texture, and strokes. Together these form a 169-
dimensional feature vector x for any individual piece of clip art. Figure
5.1 shows some representative examples of clip art whose styles are very
different along each of the identified aspects. We now describe the list of
features that form our feature vector. To compute features, we render each
clip art image to 400x400 pixels. For each image, we define a mask Ω that
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approximately covers the clip art. We select all non-white pixels, perform a
morphological expand operation of ten pixels, and then fill the remaining
holes. All the statistics are computed only on the domain of Ω.

color . These features distinguish between different styles of color use;
some styles we observe include black-and-white, monochrome, colorful, muted,
and bright/saturated colors. Note that these statistics reflect styles of color
usage rather than the individual colors used.

The first color features are scalar values, defined as follows: Standard de-
viation of hue; average saturation; standard deviation of saturation; average
luminance; standard deviation of luminance; entropy of the luminance his-
togram, after quantizing it to 256 bins; entropy of the RGB histogram, after
quantizing it to 512 bins; colorfulness, computed by the measure of Hasler
and Susstrunk [68]; colorfulness, computed as:

1
|Ω| ∑

p∈Ω
|Rp − Gp|+|Gp − Bp|+|Bp − Rp| ; (5.1)

percentage of pixels that are black; and percentage of pixels that belong to
the most dominant color.

Additionally, we define a few features in terms of a 20-bin histogram
C(h) of hue h, omitting pixels with saturation less than 0.1, similar to Li et
al. [108]. Then, we include a feature for the frequency of the most common
hue (maxh C(h)), and a feature for the number of dominant hues:

#(h | C(h) > 0.05 max
h

C(h)) (5.2)

We also include the same two features above applied to a quantized RGB
histogram; that is, the number of pixels in the most frequent color, and the
number of dominant colors.

shading . These features distinguish types of shading. Some styles have
a very cartoonish look, with sharp, simple color transitions; others have
more realistic materials with smooth gradients. We describe shading with
histograms of both color and grayscale gradients. The former captures the
overall appearance and materials of colored images, while the latter captures
transitions between shading and stroke lines, if any.

We concatenate eight-bin gradient magnitude histograms at two resolu-
tions of the image, 1x and 0.5x. The histograms are normalized by |Ω| for
the relative figure size. The resulting bins are concatenated to form the cor-
responding features in x.

The first pair of histograms measure smooth gradients, while ignoring
zero gradients and sharp transitions. We define the region Φ as the region
Ω minus all black pixels and pixels with zero gradients. Then, we histogram
the following values for all p ∈ Φ:

g(p) = min(max(|∇Rp|, |∇Gp|, |∇Bp|), 1.1) (5.3)

The natural range of the above values is [0,
√

2]; however, we truncate any
values over 1.1 to minimize the influence of strong edges.

The second pair of histograms is computed as above, but only at black
pixels, and without truncation of 1.1. This histogram is meant to quantify
the number of sharp edges (e.g., ink edges).
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texture . These features capture the presence of repeated patterns over
the image. Texture defines the look of a depicted object at a small scale, and
gives an intuition of how an object in an image would feel when touched.

Our first texture descriptor are Local Binary Patterns (LBP) [140, 199]. An
LBP feature vector is represented as a series of patterns; each bin in our
feature vector contains the number of times a certain pattern occurs in the
image. The number of patterns is specified by the radius R and the sampling
points P. We used rotational invariant patterns [140] at three resolutions
LBPP,R, in particular LBP8,1, LBP12,2 and LBP16,4 yielding a total of 10, 14

and 18 patterns (bins), respectively.
We use two different sampling spaces: all edges of the figure, and only

external contour lines. In total this descriptor yields 84 features.
Our second texture feature are Haralick texture features [67]. We compute

all 22 Haralick texture features, which are obtained from co-occurrence ma-
trices capturing the frequency of different combinations of grayscale pixel
values.

strokes . The types of strokes used are a significant element of clip art
style [77]. Clip art strokes typically vary in texture, thickness, and weight.
Some of these characteristics are already captured by the LBP features, like
thickness or uniformity of the stroke lines. We add additional stroke fea-
tures using the Stroke Width Transform (SWT) [42], which was originally
developed to recognize text in natural images. The SWT is a local operator
which approximates the width of the stroke at each pixel.

We compute SWT separately on outer edges of the figure on the silhouette,
and inner edges, since their appearance is often different; the result is two
arrays of likely stroke width values per pixel. We then take the mean and
standard deviation of these two images. Finally, to avoid scale sensitivity we
compute SWT at four different resolutions of the image: 1x, 0.5x, 0.25x and
0.12x. The result is 16 feature values.

5.4 collecting similarity information

We use two sources of clip art to train our models: clip art from Art Ex-
plosion1, a commercial collection of over 200,000 pieces of clip art, and a
collection of 3,600 clip art pieces that is included with Microsoft Office. For
the former collection we used crowdsourcing to collect data on stylistic sim-
ilarity. In contrast, the latter, smaller collection is already organized into
groups of stylistic similarity.

We manually selected 1000 images from the Art Explosion dataset that
cover a wide range of styles and subjects. We used Mechanical Turk (MTurk)
raters to collect style information. Each test (a HIT in Mechanical Turk termi-
nology) consisted of fifty questions. We gathered data in the form of relative
comparisons [126, 154] since they are much easier for human raters to pro-
vide than numerical distances. Each question showed three pieces of clip art
A, B, and C, and the MTurk rater is asked: “Is A more similar to B or to
C?" (Figure 5.2.) For the Microsoft data, we automatically generated relative
comparisons through random sampling constrained so that two of the three
samples in each relative comparison come from the same style group.

Each HIT was preceded by a short training session that included a few
trial relative comparisons with obvious answers; the users could only access
the real test once they correctly answered all the trial questions. A total of

1 www.novadevelopment.com

www.novadevelopment.com
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A

B

C

EXAMPLE 2

- irregular contour
- motion lines
- color outside 
boundaries

- no contour
- no motion lines
- color within 
boundaries

A

B

C

Figure 5.2: Screenshots of our MTurk similarity collection interface. Left: An example given
to users at the beginning of the test to make sure they understood the question asked. Right:
An actual comparison triplet.

313 users took part, 51.4% female. 56.5% declared some artistic experience,
and an additional 7.3% claimed some professional design experience. The
duration of each HIT was approximately ten minutes, for which we paid
$0.30. Five control questions were included in each HIT; HITs with two er-
rors in the control questions were rejected, with a rejection rate of 21.5%.

5.5 learning similarity

This section describes our approach for learning stylistic similarity based on
the feature vector defined in Section 5.3 and the training data from Section
5.4. Our learning approach uses a combination of previous techniques that
works well for our application. Let x and y be the feature vectors for two
pieces of clip art. We aim to learn a Euclidean distance metric

d(x, y) =‖ x− y ‖W=
√

(x− y)TW(x− y) (5.4)

parameterized by a diagonal matrix W. This problem is well-studied and
known as metric learning [96, 154]. Our problem is further complicated by
the fact that crowdsourced relative comparisons are not always reliable;
there are several approaches to modeling worker reliability both in classi-
fication [183] and search ranking [30]. We minimize this reliability problem
in two ways. First, we use a number of control and training questions to
reject bad workers. Second, we use a logistic formulation of the probability
of each rating [170] that expects more noise for relative comparisons with
less clear answers.

Specifically, we use the metric learning approach of Donovan et al. [138],
who adapt the logistic formulation of Tamuz et al. [170] to the scenario of
learning from features: Given clip arts A, B, and C, we define q = 1 if the
rater states that A and B are more similar, and q = 0 if the rater states A
and C are more similar. We parameterize the model by the diagonal of the
weight matrix: w = diag(W). We model the probability that a user rates q = 1
given the tuple as:

PA
BC(q = 1) = σ(d(xA, xC)− d(xA, xB)) (5.5)

σ(x) = 1/(1 + exp(−x)) (5.6)

In addition to this model, we aim to regularize and sparsify the weight
vector. We thus assume a Laplacian prior on the weights:

p(w) ∝ exp(−λ||w||1) (5.7)
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where λ is a regularization weight. Given a set of Turker ratingsD = {(Ai , Bi , Ci , qi)},
we learn the weights w by Maximum A Posteriori estimation, which entails
minimizing the following objective function:

E(w) = −
|D|

∑
i=1

log
(

PAi
BiCi

(qi)
)

+ λ||w||1 (5.8)

where i indexes over the training tuples. We perform optimization using
L-BFGS [200].

We set the regularization weight λ by five-fold cross-validation on the
training set. After training, all weights with w < 0.02 are set to zero.
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MTurk MS

Raw Majority

Learned Weights 0.72 0.81 0.95

Uniform Weights 0.68 0.75 0.94

Humans 0.68 0.74 N/A

Oracle 0.83 1 N/A

Table 5.1: Accuracy of our method (with and without training) and two baselines, on both
the MTurk and Microsoft testing data. Higher values are better (see text for details).

MTurk MS

Raw Majority

Learned Weights (MTurk + MS) 1.75 1.57 1.18

Learned Weights (MTurk only) 1.76 1.64 1.30

Learned Weights (MS only) 2.52 1.77 1.11

Uniform Weights 1.83 1.73 1.39

Table 5.2: Perplexity of our method on both the MTurk and Microsoft testing data. Lower
values are better (see text for details).

5.6 similarity function evaluation

We now evaluate the influence of the regularization term, the performance
of the learning process, and the quality of the training data. The training set
includes 25,540 tuples gathered via Amazon Mechanical Turk and 25,000

tuples generated from the labeled data from Microsoft.

5.6.1 Feature Selection

The use of L1 regularization encourages a sparse set of weights. Through
cross-validation, the regularization weight was set to λ = 1.3. After the
thresholding step, we reach a final weight vector with 78 non-zero weights;
the 91 zero-weight features can be ignored. The learned weights are shown
in Figure 5.3. Some features are deemed irrelevant (e.g., the entropy of both
luminance and color), while others can be covered with a smaller set of fea-
tures (e.g., by using a few bins of LBP instead of all). The highest weighted
feature is the number of unique hues; the number of RGB colors is the sec-
ond highest. Several bins of the LBP, Haralick, Color Gradient, and Stroke
width features are also highly weighted. The weights show that these high-
dimensional features can be simplified to lower-dimensional combinations
for our application.
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5.6.2 Evaluation on a Testing Set

We gathered a new set of relative comparisons to form a separate testing set
to evaluate our model. We sampled 1,000 new tuples from the Art Explo-
sion collection, and 10,000 tuples from the Microsoft labeled data. We used
MTurk to obtain 10 ratings per tuple for the Art Explosion data; this redun-
dancy helps us to understand which tuples have clear answers. We removed
tuples with high disagreement, i.e., tuples with MTurkers split 5-5 or 6-4 in
their judgment of which pair is more similar. This left 633 reliable compar-
isons, each with 70% or more agreement. Disjoint training tuples were used
between the training and test sets, though both sets of tuples used clip art
pieces drawn randomly from the same clip art collection.

We evaluate performance by two metrics on the test set: accuracy and
perplexity. Accuracy is the percentage of testing tuples correctly predicted
by our method. For MTurk tuples, accuracy can be computed in two ways:
raw and majority. Raw accuracy counts each of the 10 opinions per tuple
separately; majority assumes the majority opinion is correct and assigns
all votes to the winner. So, an ideal predictor which always chooses the
majority opinion would have a majority accuracy of 1, but a raw accuracy of
less than 1 assuming there is disagreement between human raters. In either
case, a completely random predictor would have an accuracy of 0.5.

Perplexity Q is a standard measure of how well a probability model pre-
dicts a sample; it takes into account the uncertainty in the model, giving
higher weight to predictions where the model outputs higher confidence
(i.e., PA

BC close to 1 or 0). It is given by

Q = 2−(ln P(T ))/|T | (5.9)

where P(T ) is the probability of the test set according to a given model,
computed by Equation 5.6 over all test tuples. The perplexity is 1 for a model
that makes perfect, confident predictions at all times. The perpexity is 2 for a
model that outputs 0.5 (total uncertainty) for all evaluations. The perplexity
is worse for a model that makes highly confident but wrong predictions.
Perplexity can also be computed with raw and majority data.

The influence of varying the parameter λ in the error measures accuracy
and perplexity is shown in Figure 5.4.
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Figure 5.4: L1 Regularization: accuracy and perplexity for different values of lambda.

We show accuracy data in Table 5.1 and perplexity data in Table 5.2, both
for MTurk relative comparisons and Microsoft data. We show the results of
our model both with uniform weights w = [1...1]T , and with weights learned
from training data. Note that there is no need to separate the Microsoft
data into raw and majority, since there is no disagreement. We compare
our results with two baselines in addition to a random baseline. The oracle
predictor has access to all the human ratings and always gives the majority
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Figure 5.5: Perplexity (left) and accuracy (right) on the test data as a function of the number
of MTurk tuples used during training.

opinion; note that its raw accuracy is not 1 due to human rater disagreement.
The human accuracy is a measure of how well the average individual human
performs relative to the majority; it is computed as an average over each
human rater’s percentage of agreement with other raters on the same tuples.
Note that perplexity cannot be computed for the oracle and human models
since they are not probability distributions.

For the MTurk data, the accuracy of our model is roughly equal to av-
erage human accuracy without training; with trained weights, our model
performs better than human accuracy. Our model is able to predict the ma-
jority opinion 81% of the time. Not surprisingly, the oracle predictor is still
significantly better than our model. Our model is 95% accurate on the Mi-
crosoft data. This data is easier, since in each tuple two of the clip art pieces
have the same style; tuples with three different styles (as is common in the
MTurk data) are more subjective.

We also experimented with only training on the Microsoft or MTurk
datasets. Training on only the Microsoft data performed poorly on the MTurk
data, while training on only the MTurk data performed reasonably on the
Microsoft data. The combination of both datasets during training performs
the best or nearly the best on both testing sets (Table 5.2).

We can check whether we have collected enough tuples by holding back
some of the training data and observing accuracy and perplexity (Figure
5.5). We can see that we have collected more than enough randomly sam-
pled data; improvements stop at around 10,000 triplets relative to the 25,000

we collected. However, our triples are randomly sampled; it may be that
sampling triples closer in style could add further discriminative power [170].

5.6.3 Failure Cases

Our similarity measure disagrees with the MTurk majority 19% of the time;
we include the 25 worst examples where our probability is most inconsis-
tent with the MTurk opinions in the Appendix 5.A. We show two typical
examples in Figure 5.6. In the left example, the style of all three clip arts is
very different, and it is surprising the MTurk opinion is so consistent either
way. The right example shows another common error; our metric generally
believes two clip arts with color are more similar with each other than to
a black and white clip art. However, in this case, the iconic nature of the
examples overwhelms other differences for humans.
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Figure 5.6: Two tuples incorrectly labeled by our similarity function. In both cases, Turkers
agreed (by a 9-1 margin) that the first clip art is more similar to the second than to the third,
whereas our algorithm scores the first and third as more similar.

5.7 applications

We apply our style similarity metric in three ways: to cluster and visualize
the space of clip art styles, to perform search, and to support a mashup
application for creating compositions of clip art.

5.7.1 Clip Art Style Visualization

We use our style distance function as a basis for visualizing the diverse
styles of clip art in our dataset. In particular, we use the popular t-SNE [177];
this technique maps a high dimensional feature vector to a 2D space where
similar styles are located close to each other. To create the visualization in
Figure 5.7, we reduce the entire dataset to 100 examples by k-means on the
Wx values, select only dogs, and then perform t-SNE. We can observe a clear
separation of style; colorfulness increases from top to bottom, while stroke
complexity varies left to right.

5.7.2 Search

Figure 5.12 shows typical results of search queries using our method; we
show an additional 500 examples in the Supplemental Material2. Each image
in the left column shows a query image. The next column shows the results
from the dataset that our method judges to be most similar. In each case, the
algorithm appears to have recovered at least some artwork from the exact
same artist and style, after searching in the entire dataset of 194,663 pieces.
The other six columns show the top 3 results each for keyword queries, i.e.,
the three most similar cat images, the three most similar fish images, and
so on. The amount of clip art in each category ranges from 598 (sky) to
1836 (man). In many cases, the algorithm does not find matches by the same
artist, but finds excellent matches nonetheless, with similar stroke styles,
similar fill styles, and so on. For example, the dinosaur query is drawn in
a woodcut style with solid color fills. The first two cat results appear to be
from the same artist, whereas the third is a tiger that is not a woodcut but is
similar nonetheless. The other examples show cases where woodcut styles
are found, or, when no more woodcuts can be found, similar non-woodcuts
are returned.

Search is typically evaluated with precision-recall, where the goal is to
return search results that are in the same category as the query. In our case,
most of our data is not cleanly separable into relevant and irrelevant cate-
gories. The Microsoft data is separated into groups; however, this represents
only 1% of our overall data. Also, we found that many of the groups had

2 http://webdiis.unizar.es/~elenag/projects/SIG2014_styleSim/downloads/search1.html

http://webdiis.unizar.es/~elenag/projects/SIG2014_styleSim/downloads/search1.html
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Figure 5.7: A 2D embedding of clip art styles, computed using t-SNE, shown with “dog”
examples.

similar styles to each other, which means that clip art from one group is
often relevant to queries from another group.

5.7.3 Clip-Art Mash-ups

We also demonstrate the usefulness of our similarity metric with a simple
clip-art mashup application (Figure 5.9). The application allows users to
search for and combine multiple pieces of clip art into a composition. Our
clip art library is organized into 13 common categories (e.g., dog, tree, house);
the user can also search by keyword to find objects not in common cate-
gories, or to add a modifier (e.g., running dog). We provide 11 pre-made
backgrounds that the user can select from, including a blank white back-
ground. Clip art is added to the composition by dragging and dropping
from the search results; it can be resized or rotated, and the layer order can
be modified. The app is implemented in HTML5. We use Apache Lucene to
extract keywords from clip art file names and tags. We show several exam-
ples of mash-ups created with our app in Figure 5.7.3 and the Supplemental
Video 3.

3 https://www.youtube.com/watch?v=GBWrRHeAxuM

https://www.youtube.com/watch?v=GBWrRHeAxuM
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Figure 5.8: The leftmost composition is generated by selecting from a dataset of 200K clip
art searched with keywords: dog, tree, sun, cloud, and flower. Unfortunately, the styles of the
clip art are inconsistent. Our style similarity function can be used to re-order the results of a
search by style. The next three scenes are generated by fixing one element, and then searching
for stylistically similar clip art with the above keywords. In each case, the additional clip art
were chosen from the top twelve returned results (out of thousands).

Figure 5.9: Our mash-up interface. The user searches for clip art in the left panel by typing
keywords and/or by selecting categories from the drop-down menu. Results are shown below
the search button, sorted by stylistic similarity to already-selected clip art.

During search, clip art that matches the keyword and category query are
sorted by their style similarity to all currently-used clip art (averaged over
the existing clip art). The sort order automatically updates whenever clip art
is added or removed from the canvas.

When there is no clip art in the current canvas, a naïve approach would
be to order the search results randomly. However, some styles are more com-
mon in the dataset than others, leading to some styles not being represented
in the results. As in other search problems [147], it is important to produce
results with diverse styles. We produce diversity as follows: In advance, we
produce a two-level hierarchical clustering; the entire dataset is clustered
into 100 clusters by k-means on Wx values, and then these cluster centers
are clustered again to produce seven top-level clusters. Then, at search time,
the first seven search results are sampled sequentially from the seven top-
level clusters. This process repeats to generate the next seven results, and
so on. Within a top-level cluster, the second-level clusters are also sampled
sequentially, to avoid repetition within the cluster.

evaluation. To evaluate the impact of our similarity measure on mash-
up creation, we performed two different MTurk studies. In each study, users
were asked to create high-quality compositions. Some users were provided
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Figure 5.10: Typical mash-ups created by Turkers using our similarity.

with a version of the application in which search results are sorted by sim-
ilarity to the existing composition, and others received an interface which
sorts search results randomly. Users were not told of this difference.

In the first study, users were given an open-ended task: they were free
to choose the topic of the composition, the background, and the number of
images to use. In the second study, we asked for a specific story, fixed the
background, and required the users to include at least four different pieces
of clip art and perform at least four different searches. Study details are in
the Appendix 5.B.

We gathered 38 compositions for the first study (19 with our metric on),
and 95 compositions for the second (47 with our metric on). We show sev-
eral typical examples of compositions both with our metric and without in
Figures 5.10 and 5.11, respectively (we include all compositions in the Sup-

Figure 5.11: Typical mash-ups created by Turkers without our similarity metric. All results
are included in the Appendix 5.B.
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plemental Material). We then asked a separate pool of MTurk workers to
evaluate the compositions on both style coherence and general preference.
Specifically, we performed a 2AFC test between randomly sampled compo-
sitions with and without our metric. We asked the questions: which compo-
sition has a more coherent style?, and which compositions do you like better? For
both tests, we perform a one-sample, one-sided t-test comparing the mean
of users preferences against the null hypothesis (people have no preference,
µ0 = 0.5). Compositions created with our metric were perceived as having a
more coherent style (67% of agreement for the first and 69% for the second,
with p < 0.01), and participants liked them more (63% for the first and 66%
for the second, with p < 0.01). The effect sizes for style coherence were 1.4
and 2.4 for the first and second experiments, and 1.4 for general preference
for both experiments; these effects are large.

When using the similarity-based interface, the clip art pieces used in the
mash-ups had a mean position of 24 in the search results (confidence inter-
val: ±4.4), whereas without our metric, the mean position was 40 ±7.1. This
indicates that, although users need to look through many results in order
to find content that matches their goals, our interface cuts the length of the
search nearly in half.
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5.8 conclusion

We have presented a similarity function for illustration style that is trained
from crowdsourced data on the human perception of similarity. We also
demonstrate a mash-up application for combining clip art of a consistent
style into a scene. There are a number of ways we could improve our sys-
tem. We could collect data on how humans name illustration styles, so that
a user could ask for a “sketchy dog.” We could learn relative attributes of
style [143], so that a user could ask for a dog similar to the current one but
“more colorful.” Our metric learning technique is fairly simple and there
may be other, possibly non-linear methods that work as well or better; we
have made our data public for further experimentation. Finally, a more fun-
damental problem is to understand and parse the elements that form an
illustration, such as outlines, fills, object identity, and so on. (Even identify-
ing the outline strokes in the vector art in our libraries is non-trivial.) This
analysis could lead to richer and more accurate analysis of illustration style
and similarity.

Beyond our application of clip art style, we believe that recognizing the
style of visual content will become increasingly important as the amount
of online content increases and remixing becomes more and more common.
Design-focused social networks such as Pinterest can also benefit from the
ability to search by style, without relying on manual tagging. While vi-
sual recognition of semantics is a mature field, recognition of style is less
well explored and perhaps more challenging, since style perception is more
subjective. Given the appropriate domain-specific features, our approach
could easily generalize to other kinds of style similarity, e.g., pictures, fonts,
graphic designs, architectural elements, etc. We believe that training from
data on the human perception of style is a promising and general approach
to this problem.
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Query Full dataset Cat Fish Man Sky Flower Tree

Figure 5.12: Style-based search. The leftmost artwork is the query image. The next column
shows the most similar images in the full dataset of 200k images. The remaining columns
show the top three search results in six different categories.
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appendices

5.a additional details on failure cases

24 triplets where our metric disagree with Turkers (Figures 5.13 and 5.14).

5.b additional details and results from the mash-up evalu-
ation

(Pages 6-8) We performed two tests: the first one was an open-ended task,
where users were free to select background, the story and the number of
images to use (see Figure 5.15). The second one was guided: we required at
least 4 pieces of clip art in each composition, and we prevented the same
user from working on the same story twice (see Figures 5.16 and 5.17).

Our pool of stories were the following:

- Show summer season at the lake. Consider including animals, plants,
weather elements and/or human activities

- Show the world after an alien invasion

- You are looking at the sky through your window. Include elements
you might see in the sky

- Create a poster for a gangster movie, or a scene of the movie

- Create the poster for a scary movie, or a scene of the movie

- Wildlife: Picture the jungle or a forest, and some interaction between
animals

- Choose any character (keyword: "face") and show him/her experienc-
ing one or more desires or feelings

- Illustrate the following situation: it is your birthday, and you are feel-
ing very happy with all the presents

In both studies: time was limited to eight minutes; we paid $0.30 per task;
and we offered a bonus of $1 for the best compositions.
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A B C

3 8 0.189 0.895

10 1 0.19 0.164

5 6 0.196 0.947

9 1 0.201 0.172

6 5 0.204 0.0569

1 9 0.21 0.82

5 6 0.214 0.937

2 9 0.219 0.837

2 9 0.221 0.835

6 5 0.236 0.0756

3 7 0.237 0.863

4 6 0.246 0.896

#AB #AC Agreement Probability

Figure 5.13: Testing triplets with greatest disagreement between Turkers and our learned
similarity. The triplets are sorted by “agreement,” which is equal to the probability of the
Turk scores according to the learned model; agreement of 1 would be perfect agreement. #AB
is the number of Turkers who rated image A as more similar to B than to C; #AC is the
number of Turkers who rated A as more similar to C. The “probability” column shows the
model’s probability that A and B are more similar than B and C.
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A B C #AB #AC Agreement Probability

1 9 0.252 0.777

3 7 0.259 0.843

3 7 0.262 0.841

6 5 0.262 0.944

12 0 0.269 0.269

4 7 0.281 0.851

9 2 0.281 0.224

7 4 0.282 0.15

8 2 0.284 0.22

2 9 0.291 0.766

5 6 0.292 0.884

3 8 0.302 0.79

Figure 5.14: The next 12 testing triplets with greatest disagreement between Turkers and our
learned similarity. The triplets are sorted by “agreement,” which is equal to the probability
of the Turk scores according to the learned model; agreement of 1 would be perfect agreement.
#AB is the number of Turkers who rated image A as more similar to B than to C; #AC is the
number of Turkers who rated A as more similar to C. The “probability” column shows the
model’s probability that A and B are more similar than B and C.
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Figure 5.15: Open-ended task: The upper block shows compositions created using the sim-
ilarity metric. The lower block shows compositions created without it.
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Figure 5.16: Guided task: Compositions created with the similarity metric turned on.
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Figure 5.17: Guided task: Compositions created with the similarity metric turned off.





6S T Y L E - B A S E D E X P L O R AT I O N O F I L L U S T R AT I O N
D ATA S E T S

In this chapter, we propose several contributions towards a better compre-
hension of illustration style and its usefulness for data exploration and re-
trieval. First, we provide new insights about how we perceive style in illus-
tration. Second, we evaluate a handmade style clustering of clip art pieces
with an existing style metric to analyze how this metric aligns with expert
knowledge. Finally, we propose a method for efficient navigation and ex-
ploration of large clip art data sets which takes into account both semantic
labeling of the data and its style. Our approach combines hierarchical clus-
tering with dimensionality reduction techniques, and strategic sampling to
obtain intuitive visualizations and useful visualizations.

This work is published in Multimedia Tools and Applications 2016.

E. Garces, A. Agarwala, A. Hertzmann & D. Gutierrez
Style-Based Exploration of Illustration Datasets

Multimedia Tools and Applications (Springer), 2016

6.1 introduction

The amount of visual information available online has increased dramati-
cally during the last years. In particular, clip art collections contain massive
amounts of images which are usually classified by content. While a seman-
tic classification is undoubtedly needed for searching tasks, a style-based
exploration might result extremely helpful in certain situations, for exam-
ple, to create visually coherent presentations, web content, or any kind of
graphic design. Occasionally, we find these images labeled by the designer,
although the number of images in each group is usually very small and they
cover a specific subject e.g. animals, food,... Having unambiguous style la-
bels would be of great help in situations where we need to explore hundreds
of images from multiple collections. The problem is that the subjectivity in
the perception of style makes finding this labeling a very difficult task. The
style metric of Garces et al. [53] contributed to quantify certain properties of
style, such as line properties or shading, however there is little knowledge
about how we distinguish between different styles and how these metrics
can be used to guide users in style-based interactions.

In this work, we aim to obtain an efficient method to explore large col-
lection of clip art data sets by style. First, with the purpose of better un-
derstanding the perception of illustration style and its correlation with the
metric, we perform a user study in which we gain new insights on how
do people identify similar styles; then, we evaluate the metric using a hand
labeled data set. Finally, we propose an exploratory interface which allows
users to combine images from multiple collections and to identify the most
common styles at first glance. To do so, we leverage the existing metric to
automatically discover the implicit style hierarchies existing in such data
sets by means of hierarchical clustering and dimensionality reduction tech-
niques.

The chapter is structured as follows: in Section 6.2 we present the re-
lated work; in Section 6.3 we briefly describe the style metric of Garces et
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al. [53] and present our study about how do people identify similar styles.
In Section 6.4 we perform the analysis of a labeled data set. The exploratory
interface and results are described in Sections 6.5 and 6.6.

6.2 related work

Style Analysis. The analysis of artistic style has received much less attention
than stylistic rendering. A common way to algorithmically capture the style
elements is to learn a generative model; that is, a model that learns to create
new examples of a style from scratch, such as generating new typefaces [175,
24], and learning 3D hatching styles from examples [86]. Another type of
approaches transfer styles from examples, such as transferring painting styles
[73], photographic styles [6], or curve styles of 2D shapes [109].

Willats and Durand [184] provide an overview of the elements of pictorial
style in 2D illustrations. Recently, a computational set of low level features
which capture style has been developed for illustration [53] and fonts [138].
Several methods provide style similarity metrics for 3D shapes [66, 112, 119],
clothes [186] or infographics [152]. These works provide a distance metric
which allow content retrieval based on style, and that can be used in con-
junction with any existing algorithm which requires a similarity measure. In
particular, in this work we leverage the work of Garces et al. [53], to obtain
aesthetically coherent clusters which are exploited to provide meaningfully
visualizations of clip art datasets.

Exploration and Visualization of Data Collections. The huge amount of datasets
available online has pointed out the necessity of new tools to explore its con-
tent in intuitive ways. In particular, the problem of exploring and browsing
3D shapes is currently a hot topic of study. Kleiman et al. [92] introduce the
idea of dynamic maps to provide smooth navigation between the elements
of 3D datasets. Averkiou et al. [4] propose a combined approach between ex-
ploration and synthesis of 3D shapes. A related approach to ours is the work
of Huang et al. [76], which provide a method for organizing heterogeneous
3D shape collections based on different distance measures between shapes.
They additionally study several tree-based hierarchies to present the data.
However, none of these approaches explore the dimensionality of style.

Artistic visualizations of illustration collections have been proposed in the
context of packing layouts [150], although unlike us they do not take into
account semantic labeling, and just focus on optimal arrangements for fixed
layouts. Modeling and navigation through color spaces was introduced by
Shapira et al. [161], which fit a Gaussian Mixture Model to the pixel colors
of the image. Visualizing high dimensional spaces in two dimensions has
been done before for sketches [41], color palettes [137] and 3D models [165].

6.3 analysis of style in illustration

In this section we first briefly review the style similarity metric of Garces
et al. [53], and then we present our study of how users identify style in
illustration.

6.3.1 Style Similarity Metric

Thanks to the style similarity metric learned by Garces et al. [53], we can
compute a real-valued measure of the similarity in style of two input pieces
of clip art, independent of semantics or content. In the original work, the
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Click on the image B or C whose style is 
more similar to the image A

B

C

Attribute Reason ID
No contour 1
Thick l ine 2
Thin l ine 3
Irregular/broken l ine 4
Black&White 5
Monochromatic or very few colors 6
Colourful 7
Similar color saturation 8
Smooth 9
Sharp transitions between colors 10
3D 11
Flat or two-dimensional appearance 12
Simple form: few detail 13
Complex form: lot of detail 14

None Other reasons 15

Contour

Color

Shading

Shape

(b)(a)

A

Figure 6.1: (a) Example of question used to capture style similarity data. Each test (HIT)
on Amazon Mechanical Turk contained fifty questions of this kind. (b) List of the available
reasons offered to people to choose from.

authors demonstrate the usefulness of the metric in search-by-style oper-
ations: given a particular query clip art, the search results appear sorted
by style similarity. The metric was computed by combining crowdsourcing
and machine learning. First, they modeled each clip art image as a high-
dimensional feature vector which captures four aspects of style: color, shad-
ing, texture and stroke [39]. Then, through Amazon Mechanical Turk (MTurk),
a set of users were presented with clip art triplets, and were asked the ques-
tion: "Is clip art A more similar in style to clip art B or C?". Figure 6.1 (a)
shows an example of question of such a type. Last, using the feature vector
and the relative comparisons collected via MTurk, the style similarity met-
ric, ds, was learned by computing the Euclidean distance metric [96, 154]
(please refer to the original paper for extended details).

6.3.2 How do people identify similar styles?

While the style metric dsworks reasonably well for style-based image retrieval
operations, the authors do not offer any insights about what attributes peo-
ple consider more important when judging if two styles are similar, and
thus, the metric could be skipping relevant properties. In this work, we di-
rectly asked people what they look at when comparing two pieces by style.

We followed the same MTurk-based methodology as the original work to
obtain relative comparisons (see Figure 6.1 (a)), and additionally, we gath-
ered information on the reasons to select one result over another in the
performed comparisons. Thus, during the test, each participant would oc-
casionally be asked to choose one or several items out of a proposed set
of reasons for picking a result [151]. This questionnaire appeared randomly
with a probability of 1 in 10 in each test composed by 50 relative compar-
isons. Figure 6.1 (b) shows the complete list of proposed reasons grouped
by style attribute. In total, 294 people took part on the experiments, where
83 had none artistic experience, 190 had some experience, and 21 were pro-
fessional artists. We collected 2654 questionnaires of this kind, and grouped
the responses by user. We count the number of times a user selects a reason
and normalize that number by the total amount of answers per user.

The analysis of the answers is shown in Figure 6.2. It can be seen that
the dominant high level attributes that people notice are color and shape.
Among color criteria, the most frequent reason is the presence of a domi-



108 style-based exploration of illustration datasets

none

some

professional

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

contour color shading shape None

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

contour color shading shape none

Frecuency of selection of each attribute w.r.t. the total number of answers

Frecuency of selection of each reason w.r.t. the choice of each attribute

Figure 6.2: Summary of the results from the MTurk questionnaire. Top, cummulative num-
ber of selections per attribute, normalized with respect to the total number of answers. Bottom,
frequency of occurrence of each reason normalized with respect to the total number of answers
per attribute. In both plots, users are separated by artistic experience.

nant single color, over other reasons like color saturation. Many users iden-
tified shape as a very important attribute, which is interesting because the
style metric dsdo not include shape in the computed properties. Given that
distinguishing between a 3D and a 2D shape is a high level vision task [49],
this finding opens new avenues of future work and a big insight about how
our visual system discards other style inputs such as shading to favor shape
instead. Finally, we did not find any correlation between the artistic back-
ground of the users and the particular choices they made, suggesting that
we may not need training to perceive style in this kind of artworks. The
reason might be that the style of these pieces of art is very well defined and
thus, our visual system finds it easy to discern styles with such a high level
of stylization.

6.4 analyzing a labeled dataset

In order to analyze how the style metric dsaligns with expert knowledge,
we use the data set labelled by style from the Microsoft Office library (now
discontinued) which, to our knowledge, is the only free clip art data set
labeled according to style. We collected a total of 3024 clip art images of
220 different styles, where the average number of images per style, or style-
cluster, is sixteen. We can see in Figure 6.3 a few examples of the initial
classification as labeled in the data set, which shows that in principle the
labeling makes a good job at discerning styles, with style variations within
the same cluster being minimal. An alternative option to use the metric ds,
could have been to use this labeled data set of 3024 images to train a new
metric [188, 84, 120]. However, this subset of data only represent a 1.5% of
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Figure 6.3: Example of labeled styles from the MS data set. Top-left style is defined by
sketchy strokes without fill. Top-right and bottom-left are more colorful styles, the first with
black stroke and the second without it. Bottom-right is defined by rounded shapes with black
fill and no colors.

the total amount of data used to train ds, which was 200k images. Thus, it is
expected that dswill generalize better for any other set of images and styles.

6.4.1 Ranking Evaluation

In order to evaluate the metric using the labeled data set, and, since the
style metric was originally designed for searching purposes, we decided to
evaluate the quality of the ranking returned after a search operation. That
is, for each image of the dataset, which we call the query, we let the metric
compute the distances to the rest of the clip art images and rank them from
low to high values. At the top of the resulting ranking we expect to find
elements with the same style label as the query (true positives) and almost
no elements with different labels (false positives); as we traverse the ranked
list further down, we expect an increasing number of false positives. To do
this, we employ several ranking metrics, which have been adapted to handle
labeled data [125]:

AUC Measures the Area Under the ROC Curve. For binary classification
problems, the ROC curve measures the amount of false positives against
true positives. In our case, this value is computed counting the number of
items returned. This metric is position independent, so, an incorrect item at
the bottom of the list counts as much as an incorrect item at the beginning.

Precision-at-k (Prec@k) Measures the fraction of relevant results out of
the first k returned. This measure is specially relevant when only the first
few results matter, as in web browsing or clip art search applications.

Mean Average Precision (MAP) Precision-at-k score of a ranking, aver-
aged over all positions k of relevant items.

Mean Reciprocal Rank (MRR) Inverse position of the first relevant item
in the ranking.

Normalized Discounted Cumulative Gain (NDCG) Extension of the MRR
metric. In this case all of the top k items are scored at a decaying discount
factor.

Figure 6.4 shows the results of these ranking metrics on the initial feature
set of Garces el al. [53] with uniform weights (baseline), and with the style
metric ds. A value of one means a perfect score. As expected, the results
are always better for the learned weights and improve when the ordering
of the result does not matter, as is the case of AUC and MRR. We can also
observe that increasing the value of k for Prec@k and NDCG@k decrease
the quality of the results, introducing more false positives. In general, these
values are relatively low except for AUC, which does not take into account
the relative ordering of the elements and thus, performs quite well. As we
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BASELINE
LEARNED 
WEIGHTS

AUC 0.936 0.944
MAP 0.365 0.399
MRR 0.765 0.779
Prec@k=3 0.605 0.628
Prec@k=10 0.470 0.499
NDCG@k=3 0.614 0.638
NDCG@k=10 0.518 0.545

[Garces 2014]

Figure 6.4: Ranking measures between the unweighted features (Baseline) and the style
similarity metric [53]

will see in the following, the huge similarity between the styles of the hand-
made labels has heavily penalized these metrics.

Figure 6.5 shows some of the ranking results where the first item on the
left is the query image and the other nine items are the most similar images
according to the style metric. The images that do not belong to the same
cluster as the query (as originally labeled) are highlighted in red. At first
glance, we could say that the metric is performing poorly, however, a closer
visual inspection of these elements reveals that the styles of the retrieved
images are quite coherent. This indicates that many of the images initially
labeled as different styles are actually very close in the feature space learned
by the metric; and thus, they are perceived as similar styles. Although the
intra-cluster distance is very small, which is a desired property, the inter-
cluster distance is also sometimes very small. A disjoint labeling like this one
do not capture the overall styles available in the data set and thus, would
hinder style-based navigation task. In the following section, we propose a
exploratory interface based on clustering which will allow to overcome this
limitation by showing the most frequent styles available in the data set.

Figure 6.5: Ranking results. The first image on the left is the query image, the remaining
images are sorted by lower to high distance to it. We have used the style metric of Garces et
al. [53] to obtain the distances.
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6.5 style-based exploration of illustration datasets

As we have seen in the previous section, we may find several occasions
where images of the same style do not necessarily have the same style label,
either because they come from different collections/artists or because the
labeling is not accurate. Therefore, one of the problems that we face when
trying to find elements in these collections is the prior lack of awareness of
the available styles in the data set. This is specially problematic when we
need to select more than one images stylistically coherent i.e. we may find
that the requested images are not depicted in the desired style.

Suppose a user needs to find in certain data set several images that match
in style. Each image has to belong to a different semantic category, e.g., a
dog, a cat and a tree. We denote as L the total set of categories or semantic
labels requested by the user, where in this example L = {dog, cat, tree}. In
a typical workflow, the user would start querying the data set sequentially
by category watching that the style of all the images matches. We can make
this task easier by sorting the retrieved results by style similarity to the
previously selected items using the metric ds. In this second scenario, the
more delicate step is to select the first image, since its style will define the
order in which the remaining queries are sorted. The problem is that if the
style chosen in the first place is unusual in the data set, the user may end
up disappointed for not having enough stylistically similar images of all
the requested categories. We propose a solution to this problem in which
the user knows in advance the amount of feasible visual styles which are
available in the data set. Our approach combines unsupervised clustering
techniques along with adaptive dimensionality reduction and mapping to
sample and visualize the images of these huge collections in an efficient and
practical interface.

Given a collection of semantically labeled images, which was previously
filtered and labeled by the set of semantic categories L specified by the user,
we first perform hierarchical clustering over the filtered collection. Since vi-
sualizing the resulting tree may be impractical, we propose two complemen-
tary visualizations. On the one hand, we visualize only the top level nodes
of the resulting hierarchy in the form of a taxonomy of styles (Section 6.5.1).
This gives us the most frequent styles in the set. On the other hand, we use
dimensionality reduction techniques with adaptive relocation to visualize in
two dimensions the high dimensional space of the style features, allowing
the user to navigate through such space (Section 6.5.2).

6.5.1 Creating a Style Taxonomy

In order to facilitate data exploration and obtain meaningful taxonomies
of the style elements, we have chosen an approach based on hierarchical
clustering. Following a bottom up approach, each element initially starts on
its own cluster, and, on successive iterations, clusters are merged according
to a chosen criteria. In this work, we have chosen Ward’s criteria [181], for
which, at each step of the algorithm, the pair of clusters with the minimum
variance within-cluster are merged. A typical problem with clustering is to
choose the appropriate distance metric that captures the underlying rela-
tionships between the elements. In our case, we rely on the style metric ds,
which comprises users’ knowledge for style discrimination, and has been
extensively evaluated.
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From this step we obtain a hierarchical tree, which has two types of nodes:
intermediate nodes and leaf nodes. Leaf nodes are the lower level elements
of the hierarchy and are represented by their corresponding images. Inter-
mediate nodes define branches of style and may contain leaf nodes and other
intermediate nodes. To select the representative image of an intermediate
node, we choose the leaf-node image with the closer distance to its centroid
in the metric space of ds.

representative styles In huge data sets it may not be possible to
show all the hierarchy in one view. Therefore, we need to develop a strategy
to sample the hierarchy and select a representative number of intermediate
nodes so that we show as much information as possible about the available
styles. Our solution consists of pruning the branches that do not satisfy the
following conditions: 1) the total number of images of the branch is above
a certain number κ; 2) the number of images of each semantic category is
greater than a value τ . The first criteria balances the taxonomy so that all
the nodes contain the same number of images, the second criteria allows to
discriminate feasible paths. If a certain node does not meet these two criteria,
we remove the node and its branch. We then take the resulting leaf nodes
of the pruned hierarchy as representative styles. By changing the values of
the thresholds we control the size of the resulting hierarchy and guarantee
to capture with a few nodes the most frequent styles of the data set.

To illustrate the process, we applied it to a set of 3024 images of a wide
variety of styles from the Microsoft Office online libraries. We show in Fig-
ure 6.6 the top level nodes of the resulting hierarchy after the pruning and
the representative styles. We observe that the most dominant style has color-
ful images without contour -five representative nodes in the middle capture
this style. On the contrary, the less frequent style is compound by black and
white images- only one node capture this style. Depending on the amount
of data that we want to visualize, we vary this threshold. In Figure 6.6, we
want every representative style to have 10% of the total data ignoring se-
mantic labeling, so κ = 0.1 · 3024 and τ = κ.

6.5.2 2D Exploration: Adaptive arrangement

The style taxonomy resulting from the previous step makes it possible to
visualize at high level the diversity of styles available in the data set. Each
leaf node of the taxonomy represents a style branch, which the user can fur-
ther explore to find the desired icon sets. Since each of these branches might
contain too many images to visualize as is, we propose a two dimensional
grid-based visualization where Euclidean distances between the images in
the grid are equivalent to distances in the perceptual metric space of ds. The
optimal arrangement needs to satisfy the following conditions:

1) Fixed layout and number of slots. If the selected branch has more im-
ages than available slots in the grid, some images will need to remain
hidden in the main view. According to this condition, interface design-
ers can select the optimal size of the grid to fit their interface and data
requirements.

2) Balanced number of categories. If the user requests more than one
semantic category or label, the amount of visible images for each label
should be approximately the same. The task of finding the requested
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set of images is easier if the user can visualize most of the images at
first glance.

3) Perceptual distances. Images with similar style should remain close to
each other in the two-dimensional arrangement. This kind of arrange-
ment makes it easier the exploration of big sets of images which may
contain multiple style variations.

With the above conditions, it is unsuitable to use existing methods of
layout generation [48, 135]. They do not provide support for fixed layouts,
where there are more images than slots (condition 1), and do not take into
account the balance of the labels (condition 2). Thus, our goal is to optimally
place in a grid the set of images from a style branch according to the three
previous conditions. We propose a greedy algorithm which keeps balanced
the number of displayed labels, maintains the perceptual distances in style
in the grid, and takes into account special situations where there are more
images than positions in the grid, i.e., situations in which one position in
the grid may contain multiple images.

problem formulation We consider a regular grid G = {X} of size
M×N, the set of images of a branch I which we want to arrange in G, and a
set of semantic labels L. Each image i ∈ I has a label from L associated, and
the function label(i) returns it. Each node x ∈ G defines a tuple x = (i, l, h, s),
where: xi ∈ I is the image chosen to represent the node; xl ∈ L is the
semantic label of such image; xh is the list of candidate images assigned to
the node (which excludes xi) and xh(k) denote the kth image in such vector;
xs is the state of the node, where xs ∈ {single, multi, empty}. We define a
function o(x) = |xh| that counts the total number of candidate images per
node, and a function oh(x, a) = |xha | that counts the number of candidate
images per node x with a given label a. Each state xs is defined as follows:

- xs = single⇐⇒ i 6= ∅, l 6= ∅, o(x) ≥ 0

- xs = multi⇐⇒ i = ∅, l = ∅, o(x) > 0

- xs = empty⇐⇒ i 6= ∅, l 6= ∅, o(x) = 0

where single and multi nodes differ in that single nodes have their repre-
sentative image defined, and multi nodes do not. Note that multi nodes just
define transitory states where there are multiple candidates for the node but
a representative image has not been selected. A single node where o(x) > 0
contains hidden images that can be shown, for example, in auxiliary panels
or pop-ups.

initialization We initialize G with the output of SOM (Self-Organizing
Map) algorithm [93] applied to the set of images I with a grid size M× N.
This method finds a mapping between the n-dimensional feature space of
the images and the 2D grid. In our case, we use the 169-dimensional style
feature vector [53]. The SOM algorithm performs unsupervised training of
a neural network to obtain a weak classification of the data. This method is
suitable for grid structures and has been successfully used to display con-
tinuous color palettes [135]. As a result, we have a mapping of each image
on the grid where the perceptual distances in the feature space are well
preserved. However, this mapping has three problems: 1) it may contain
unassigned nodes (xempty); 2) the mapping of the labels might not meet
the balance criteria, i.e. the amount of images of each label in single nodes
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is not the same; and 3) it may have multiple images assigned to the same
position of the grid. When this third situation happens, we set the node to
multi state, and leave the representative image and label empty. Our goal is
to find the optimal arrangement of G, so that it meets this three requested
conditions, or similarly, the following energy is minimal:

min
G
|EN|+ ∑

a,b∈L,a 6=b
|γ(a)− γ(b)|+|MN| (6.1)

where γ(a) = |{x|x ∈ G ∧ xs = single∧ xl = a}| is the number of single nodes
in G with label a ; EN = {x|x ∈ G ∧ xs = empty} is the set of empty nodes,
and MN = {x|x ∈ G ∧ xs = multi} is the set of multi nodes. Solving the
optimal arrangement can be shown that is an NP-hard problem, therefore,
we propose a greedy efficient solution which works sufficiently well for
our purposes. In a first step, we turn all the multi nodes into single nodes
(xmulti −→ xsingle) by selecting the optimal representative image among
its candidate list. In a second step, we turn the empty nodes into single nodes
(xempty −→ xsingle) by taking hidden images from neighbor nodes in the
grid.

step 1 : arrangement of multi nodes (xmulti −→ xsingle)
The naïve solution to turn every multi node into single node is to ran-

domly choose one of the candidate images in xh. This is an optimal option
if we only have one label in L, however if we have more than one label, we
need to choose the image in a more principled way to guarantee the balance
condition. Our strategy is the following: first, find the label with minor oc-
currence in single nodes; second, find a suitable multi node which contains
that label in the list of candidates xh; and third, set as representative im-
age any appropriate image from the candidate list xh of the chosen node.
In more detail, in each iteration, we find the set of minority labels in single
nodes (line 4); then, sequentially for each of these labels, we find a suitable
multi node which contains such label in xh (line 5). If, for a certain label,
we do not find a multi node which contains it, we remove such label from
the candidate label set LC (line 7). For finding the optimal multi node, we
give priority to the nodes with smaller number of candidates (line 10). This
criteria aims at maximizing the chances to find a suitable multi node for the
next label at every step.

step 2 : arrangement of empty nodes (xempty −→ xsingle)
The process to turn empty nodes into multi nodes is similar as before. We

aim to fill empty nodes with the less frequent labels ls, so we start by sorting
the labels by frequency of appearance (line 4). Since empty nodes do not
have a candidate list, we need to find a suitable image from its neighborhood
nodes’ candidate lists. We start by computing the list of nodes M(l) which
contain the chosen label l in their candidate list (line 6). Then, we explore its
5× 5 neighborhood Nx in the M× N grid, and create the candidate list S(l)
with the nodes within Nx which are empty (line 7). If S(l) is empty, there are
no hidden images with the requested label, so we remove the label from LC
(note that candidate images in a single node become hidden images after step
1). Otherwise, we select the empty node in S(l) which has the fewer amount
of candidate images in its neighborhood (line 12). To select the image to
assign, we find the neighbor node with fewer candidates available and take
any suitable image.
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Algorithm 3 Step 1: Arrangement of Multi nodes
1: Data G = {X},L
2: LC ← L
3: while ∃xmulti ∈ G′ do
4: {ls} ← min

l∈Lc
γ(l)

5: for all l in ls do
6: if S(l) = ∅ then
7: LC ← LC − {l}
8: else
9: . Find optimal multi node in S(l)

10: xj ← min
x∈S(l)

o(x)

11: . Update node values: state, image, label and list of
candidates

12: xs
j ← single

13: xi
j ← xh(k)

j : label(xh(k)
j ) = l

14: xl
j ← l

15: xh
j ← xh

j − {x
h(k)
j }

16: end if
17: end for
18: end while

Algorithm 4 Step 2: Arrangement of Empty nodes
1: Data G = {X},L
2: LC ← L
3: while ∃xempty ∈ G ∧ LC 6= ∅ do
4: {ls} ← min

l∈Lc
γ(l)

5: for all l in ls do
6: M(l) = {x|oh(x, l) > 0}
7: S(l) = {x|xempty ∧ x ∈ 8Nx′ ∧ x′ ∈ M(l)}
8: if S(l) = ∅ then
9: LC ← LC − {l}

10: else
11: . First, find the optimal empty node xj in the set S(l)
12: xj ← min

x∈S(l)
oNh (x) : oNh (x) = ∑

x′∈8Nx

o(x′)

13: . Second, take the representative image from the neighbor
node with fewer available candidates. Then, update values

14: xi
j ← xi

k : xk = min
x∈8Nxj

o(x)

15: xl
j ← l

16: xs
j ← single

17: end if
18: end for
19: end while
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Initialization

Step 1: Distribution after the first step: xmulti to xsingle

Step 2: Distribution after the second step: xempty to xsingle (final arrangement)

xx

xx

x x

xx

x

Figure 6.7: Distribution of labels and images after each step of the algorithm. Left column:
labels xl for dog, sky and tree categories represented by red, green and blue colors respectively.
Right column: panel with images xi. In Initialization and Step 1, this panel includes an
additional vertical panel on the right (squared in purple). The images within this panel
belong to the corresponding purple node on the main panel, i.e. in these nodes the number of
candidate images is greater than zero after both steps. After Step 2, these images have been
redistributed to produce a fully occupied grid. The input is a set of 2141 images with three
different labels: dog, sky, tree with 1147, 100 and 894 images per label respectively. Note
that green label (sky) is the less frequent and yet it has significant representation in the final
arrangement.
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The whole process is illustrated in Figure 6.7 for a subset of data and
a small grid layout of 5 × 6. The initialization step shows several empty
slots and unequal label distribution. Multi nodes are marked with a cross
in the top panels; the assignment of labels and representative images for
these nodes is done randomly in the initialization. In the second step, the
label and images of multi nodes are set to maximize the variety of visible
labels (balance condition). Finally, in the last step, the holes are filled with
hidden candidates. We can see in purple and yellow two examples of this
rearrangement. In the final step, all the images are visible while keeping the
style arrangement.

6.6 results and evaluation

(b)

(a)

(c)

Figure 6.8: Representative Styles of the tree-dog-sky data set. (a) Contains the full data set
with τ = 10 and κ = 100. In (b) we have reduced the amount of tree elements to 100, while
in (c) we have reduced the tree category by the same amount, both with τ = 5 and κ = 50. As
we can see the representative styles change depending on the available data.

In the following section, we test and evaluate every step of our approach
separately. We first provide several examples of the representative styles
for multiple variations of a data set. Then, we provide examples of 2D ar-
rangements and comparisons with related work. Finally, we evaluate the
usefulness of our approach with a user study.

We have selected a collection of images, which we name the tree-dog-sky
data set, which contains 2609 images of three different categories: 568 im-
ages of sky category, 894 of tree, and 1147 of dog. After the branch pruning of
Section 6.5.1 with parameters τ = 10 and κ = 100, we obtain a total of 1129

images (376 sky, 321 tree and 432 dog) which yield fourteen representative
styles (Figure 6.8 (a)). This step guarantees that for each of these represen-
tative styles we have at least one hundred images in total and ten images
of each category. In the representative styles we can see that the data covers
a great variety of styles: four nodes for black and white styles with differ-
ent levels of sketchiness, two nodes for colorful styles without contour and
seven additional nodes with different variations of shading and complexity.
We have also done experiments by randomly removing images from one
category. In Figure 6.8 (b-c) we can observe the resulting styles by reducing
to 100 the number images of sky and tree categories and τ = 5 and κ = 50.
We can see that the representative styles change depending on the available
data.
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We have compared our adaptive 2D arrangement with the recent method
of Fried et al. [48] and the raw output of Self-Organizing Maps (SOM) [93].
We have selected two of the style branches of Figure 6.8 (a) and mapped its
content in a 2D grid (Figure 6.9) of fixed size 7× 10. Since Isomatch does not
handle grids of smaller size than the number of images, we have randomly
sampled a subset of the data to visualize it. In our solution and SOM we
mark the nodes with more than one images assigned with a red square. We
can observe that our solution and SOM preserves better than Isomatch the
style distances in the grid, see for example, that the moon images in the
black style are located closed to each other in SOM while the arrangement
of these images in isomatch looks random. The same happens with several
other clusters of style marked in the figure. Our solution keeps this good
behaviour of SOM while producing a fully occupied grid.

Self-Organizing Map (SOM)

Isomatch

Our solution

Figure 6.9: 2D arrangement for the two style branches marked with dotted lines in Fig-
ure 6.8 (a). Top: Self-Organizing Map [93]. Middle: Isomatch [48]. Bottom: Our solution.
We observe clear style clusters in SOM (marked in red) which are also preserved in our
solution. The arrangement of these images in Isomatch looks more chaotic.
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evaluation We performed a user study to evaluate the impact of our
approach on icon selection tasks. In this study, some users were provided
with our style-based exploratory interface, and others received a simpler
version were the search results were just sorted by style similarity. Users
were not aware of this difference, and they just interacted with one version
of the interface.

The task was to find a set of icons matching in style for a kids’ user
interface. We gave them the list of requested categories: face, fish, flower and
bird (with 937, 1014, 1022 and 1015 images), which they had to find on the
data set and place on a canvas. Each time a category was set on the canvas,
we automatically eliminated the images of such category on the retrieved
results to ease the task in both interfaces. We asked each user to create
four sets of icons of four different styles, and at every moment, they were
able to see all the completed sets to avoid repeating styles. In each of the
requested sets, one of the requested categories had considerably less images
than the other three. To avoid bias, the users were not aware of this fact. We
specifically selected this scenario to prove that our method can handle such
difficult cases, when the data set does not contain all the images in all the
styles. There is a screen capture of both interfaces and the instructions in
Figure 6.10. Please, see also the accompanying video.

We gathered a total of 64 icons sets, 28 created with our interface and
36 without it. For each interface, we measure the average time to complete
each set and the number of delete operations. The average time for each set
using our interface was 79 seconds with a confidence interval at 95% of ±20,
and 108 seconds without it , with a confidence interval of ±27. The average
number of images deleted was 0.6 with our interface and 2.8 without it,
with confidence intervals at 95% of 1.1 and 1.2 respectively. We additionally
captured several comments from the users which tested the basic version
that complained about not having enough data of certain styles. From this
experiments we can conclude that using our approach, the task of finding
optimal icons sets of multiple styles is easier and around 30 % faster than
using basic exploration, providing more information and guidance.

6.7 conclusions and future work

In this work we have presented a method to explore and visualize big col-
lections of clip art images according to its visual style. We have relied on an
existing style similarity metric which we have evaluated with two novel ap-
proaches: by means of a user study, we have learnt that users perceive stroke,
shape and color as the most dominant attributes to identify similar styles;
by using a labeled data set, we have obtained objective error metrics which
measures its quality. Using this metric, we have built a hierarchy which cap-
tures the underlying structure of styles existent in a given data set. A com-
bined approach between dimensionality reduction techniques, and strategic
sampling of certain nodes of the hierarchy allows to intuitively visualize the
styles present in the data set and navigate through them. We have tested
and confirmed the usefulness of our approach by means of a user study.

The main problem we have found to capture style is that visual style
attributes are very correlated. For this reason, is highly difficult to identify
clear categories. An interesting avenue of future work would be to describe
the style with relative attributes [143], that is, it is easier to say that an image
is very colorful than to classify an image as colorful or not. In this sense, we
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want to explore fuzzy clustering algorithms to see whether they can capture
complex relationships between the visual elements.



122 style-based exploration of illustration datasets
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In this thesis we have presented a variety of contributions towards exploring
appearance and style in heterogenous visual data, including real world rep-
resentations and artistic depictions. Although in both cases, the input data
is just a set of pixels—arranged in 2D (photo or picture), 3D (video) or 4D
(light field)—and no additional input is used, the nature of these two prob-
lems is completely different. Appearance can be defined in terms of physical
laws, so we can build models in advance that approximate such laws; while
style is a subjective concept derived from social and environmental factors,
for which we need to rely on human-based perception and machine learn-
ing techniques. In the following, we present the conclusions of each topic
separately.

appearance in real scenes

Appearance can have multiple definitions, and be modeled in several ways
depending on the complexity of the materials and the light we want to cap-
ture. However, the more information we want to capture about the scene,
the more complex and expensive the equipment needs to be. In this thesis
we have focused on visual data that can be obtained from conventional con-
sumer cameras, such as images, video sequences or light fields. We have
relied on a very simple model named "intrinsic decomposition", which rep-
resents a scene as the product of two components: reflectance and shading.
This model assumes that the materials are Lambertian and that scene is
illuminated by a white light. Despite these assumptions, we have shown
during Part II of this thesis that this model is valid for a huge number of
scenes present in the natural world.

In Chapter 2, we have presented our solution to the problem of intrinsic
decomposition in single images. In our formulation we have relaxed com-
mon C0 and C1 constraints of Retinex-based methods by allowing C1 discon-
tinuities in the shading layer. Our approach which is based on a two level
clustering strategy -first in color space and then in image space- allows to
incorporate global and local constraints, respectively. Our method is free of
user interaction and yields results on pair with user-assisted methods highly
costly to tune. We also believe that our approach could inspire future work
on color and reflectance clustering. Due to the difficulty of the task, this is
still an open problem and recent trends rely on data-driven models where
a dictionary of reflectances is learnt via human computation [13] or using
synthetic data for training in conjunction with deep neural networks [133].

In Chapter 3, we extend the problem in the temporal dimension, taking
video sequences as input. This domain has new challenges nonexistent in
single images. First, the amount of data to handle increases drastically e.g.
a typical 10 seconds video sequence of 30fps might contain 300 frames to
process; second, we need to guarantee the temporal consistency and avoid
flickering artifacts between frames; third, the content of the scene is not
static, so new objects might appear not present at the beginning of the se-
quence. With all this constraints in mind, we have developed a solution
which does not explodes computationally, can handle new unseen objects,

125
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and is temporal consistent. Our work, although not real time, was seminal
in the field, and inspired recent works that have reached real time rates [127]
producing on pair quality results to ours. The benefits of this decomposition
in video sequences span those we found for single images, such as segmen-
tation or material editing, while can improve other tasks which are sensible
to illumination changes and occlusions, such as optical flow estimation.

In Chapter 4, we further extend the problem in the angular dimension,
taking light fields as input. This type of data shares the benefit of single
images in terms of static scenes, but it has an increased difficulty with re-
spect to video sequences, as the angular coherency is much more difficult to
maintain than the temporal one. We could try to “stack” the light field into
multiple video combinations but that would be highly inefficient. Instead,
in our approach we leverage the whole volume to obtain more precise and
coherent cues about albedo variations. Our solution is a simple approach to
the problem that still assume Lambertian materials. Thus, given that light
field volumes can capture much rich information about material properties,
there is still plenty of potential future work in this field, which we will dis-
cuss later on in this chapter.

style in artistic scenes

In the second part of this thesis we have focused on the problem of recog-
nizing style from illustration art. In Chapter 5, we presented a similarity
metric trained from crowdsourced data on the human perception of style
similarity. In our framework, we propose a set of engineered features which
capture several properties of style, in particular, shading, strokes, color and
texture features. Then, we leverage human computation to learn the rela-
tive importance of each of those features to perceive style in this kind of
artwork. Beyond our application of clip art style, we believe that the pro-
posed framework is suitable for any other domain which requires percep-
tual comparisons. In fact, our work was source of inspiration for subsequent
works which used the same framework to learn perceptual similarity of
shapes [119], faces [25], infographics [152], 3D furniture [112], or decoration
for interiorism [12]. The success of this idea was in part due to the recent
demand to search and explore huge amounts of data coming from multiple
domains. As the amount of online information grows, the need to develop
better tools to manage this data in alternative dimensions rather than us-
ing the hand-made labels becomes more and more necessary. Besides, we
might find sources of data that might not be even labeled. Style is a domain
which, contrarily to visual semantic search, is still highly unexplored, and
we believe that our work has planted a fruitful seed.

On the other hand, just a style similarity metric might not be enough for
a successful application, and we might want to combine this property with
hand-made labels or visual semantics. Thus, in Chapter 6 we have proposed
a style-based exploratory interface which combines semantic labeling of the
images with the style similarity metric. We have been able to summarize
the most frequent styles of a dataset so that the user can figure out in a first
glance if the dataset contains all the images he or she needs in a certain style
and with a particular content.
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future work

Regarding the problem of appearance capture, an exciting avenue of future
work is to use deep convolutional networks to learn more complex rep-
resentations of appearance. In particular, light field volumes have a very
structured representation which make them specially suitable to fit these
type of non-linear models [85]. Recent works in the field support this idea,
for example, Heber and Pock train a convolutional network to identify dis-
parity values and extract depth maps [72], or Jampani et al [79], propose
a framework to learn sparse high dimensional filters. On the other hand,
viewpoint dependent effects like specular reflections [171] have a particular
behaviour in the light field volume. Thus, it could be interesting to extend
the intrinsic model to take into account specular effects, for example, using
the Dichromatic Reflection Model [159]. Another potential idea to improve
this low level task is to use high level semantic information which can be
successfully captured with deep convolutional networks [95]. For example,
if we knew that an area of surface is labeled as “rug”, we would know
that variations in chromaticity in that area of the scene would be due to
reflectance an not shading variations. This idea was inspired by a recent
work in the field that uses both types of input—semantic and structural—to
predict occlusion boundaries in video sequences [50].

Regarding style, we would like to explore other domains in the field of
digital design. Following our previous work [44], which selects an optimal
subset of icons via human computation, we would like to extend this ap-
proach by providing a style similarity metric for icons. Then, by taking as
input a dataset of icons like the one provided by the Noun Project1, the
whole pipeline would be fully automatic. Automatizing design tasks is a
very interesting topic too, and in particular, we have been working on style
transfer for vector art. However, this problem is highly challenging as the
style of this type of data is highly defined. Contrarily to transferring style
for pictures and photographs [58], vector art is much more structured and,
many times, style in this kind of artworks involve changing the abstraction
level, that is, the shape, making the task more difficult. In this regard, recent
advances in the use of deep generative networks to transfer style between
fonts [176] makes us think that a combination between structural informa-
tion with deep learning strategies could be a interesting way to go.

Intending to combine what we have learned from both domains, real
scenes and vector art, we would like to investigate the cross-depiction prob-
lem, and try to find an answer to the question: What does make a cat look
like a cat? Since our human visual system is able to recognize a cat equally
if it is sketch or a realistic picture, is it possible to obtain a model which is
invariant to depiction? This is an open question subject of current research,
which might be possible to answer if we will be able to understand and find
part-based models in deep neural networks.

1 https://thenounproject.com/

https://thenounproject.com/
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personal conclusions

During these years I have had the opportunity to work with many people
in many different projects. I was lucky to be part of a highly collaborative
group and to get to know and work with very respectful researchers around
the world. All this has helped me to grow as a researcher, from the very first
meeting that I can remember where everybody knew everything and me
nothing, to the very last one, where it was me who lead the discussion
group. I have learnt to adapt to the circumstances and the problems and
to understand that sometimes is better to kill a project on time, rather than
banging your head against a brick wall—this is something that took me
quite some time to learn. From working remotely with other people outside
the lab, I had to improve my communication skills and to figure out ways
to present the results effectively. Besides, being part of a multidisciplinary
group opened my mind to learn other fields apart from my initial interests,
which I think it is something very valuable for a researcher.

More personally, it is difficult to express with words all the feelings that
come up when I think about these five years, the ups and downs, the exci-
tation and the frustration, the hits and the failures... But in the end, if I put
all those in a balance the outcome is always positive.
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