Diss. ETH No. 19140

Constraint-Based
Surface Processing

for Geometric Modeling and Architecture

A dissertation submitted to
ETH Zuricu

for the degree of

DOCTOR OF SCIENCES

presented by

Michael Eigensatz
MSc CS, ETH Zurich

born 16 December 1979
citizen of Kriens, Lucerne

accepted on the recommendation of

Prof. Mark Pauly, examiner
Prof. Mario Botsch, co-examiner
Prof. Markus Gross, co-examiner

Prof. Helmut Pottmann, co-examiner

2010

delivered by

www.eg.org

-G EUROGRAPHICS
= DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

"The more constraints one imposes, the more one frees one’s self.”
- Igor Fyodorovich Stravinsky

Abstract

This thesis investigates the application and implementation of geomet-
ric constraints to manipulate, approximate, and optimize surfaces for
modeling and architecture. In modeling, geometric constraints provide
an interface to edit and control the form of a surface. We present a ge-
ometry processing framework that enables constraints for positional,
metric, and curvature properties anywhere on the surface of a geomet-
ric model. Target values for these properties can be specified point-
wise or as integrated quantities over curves and surface patches em-
bedded in the shape. For example, the user can draw several curves on
the surface and specify desired target lengths, manipulate the normal
curvature along these curves, or modify the area or principal curvature
distribution of arbitrary surface patches. This user input is converted
into a set of non-linear constraints. A global optimization finds the
new deformed surface that best satisfies the constraints, while min-
imizing adaptable measures for metric and curvature distortion that
provide explicit control on the deformation semantics. This approach
enables flexible surface processing and shape editing operations. In
architecture, the emergence of large-scale freeform shapes pose new
challenges to the process from design to production. Geometric con-
straints directly arise from aesthetic, structural, and economical re-
quirements for the fabrication of such structures. A key problem is the
approximation of the design surface by a union of patches, so-called
panels, that can be manufactured with a selected technology at reason-
able cost, while meeting the design intent and achieving the desired
aesthetic quality of panel layout and surface smoothness. The produc-
tion of curved panels is mostly based on molds. Since the cost of mold
fabrication often dominates the panel cost, there is strong incentive to
use the same mold for multiple panels. Various constraints, such as
the limited geometry of mold shapes and tolerances on positional and
normal continuity between neighboring panels, have to be considered.
We introduce a paneling algorithm that interleaves discrete and con-
tinuous optimization steps to minimize production cost while meeting
the desired geometric constraints and is able to handle complex ar-
rangements with thousands of panels. The practical relevance of our
system is demonstrated by paneling solutions for real, cutting-edge
architectural freeform design projects.

Zusammenfassung

Diese Doktorarbeit untersucht den Einsatz und die Implementierung
von geometrischen Bedingungen zur Manipulation, Approximation
und Optimierung von Fldchen in der geometrischen Modellierung
und in der Architektur. In der Modellierung bieten geometrische
Bedingungen eine Schnittstelle, {iber welche die Form einer Fldche
editiert und optimiert werden kann. Wir prédsentieren ein Frame-
work zur Geometrieverarbeitung, welches es ermoglicht, Beding-
ungen an Positions-, Metrik-, und Kriimmungseigenschaften an be-
liebigen Stellen eines geometrischen Modells vorzuschreiben. Ziel-
werte fiir diese Eigenschaften konnen punktweise oder integriert tiber
Kurven- und Flachenelemente spezifiziert werden. Der Benutzer kann
zum Beispiel mehrere Kurven auf eine Fldche zeichnen, die Lingen
dieser Kurven oder die Normalenkriimmung entlang dieser Kurven
vorschreiben oder er kann den Flacheninhalt sowie die Hauptkriim-
mungen auf beliebigen Fldchenelementen modifizieren. Diese Be-
nutzereingabe wird in eine Menge von nichtlinearen Bedingungen
tbersetzt. FEine globale Optimierung findet die neue, deformierte
Flache, welche die Bedingungen bestmoglich erfiillt. Gleichzeitig
geben anpassbare Masse der Metrik- und Kriimmungsverzerrung dem
Benutzer explizite Kontrolle iiber die Deformationssemantik. Dieser
Ansatz ermoglicht flexible Flichenverarbeitung und Formeditierung.
In der Architektur stellt die vermehrte Verwendung von grossen
Freiformflichen neue Herausforderungen an den Prozess vom De-
sign zur Produktion. Geometrische Bedingungen entspringen direkt
den &sthetischen, strukturellen und 6konomischen Anforderungen der
Fabrikation von solchen Gebilden. Ein grundlegendes Problem ist
dabei die Approximation der Designfliche durch eine Menge von
Flachenelementen, so genannten Panelen. Diese Panele sollten mit
einer bestimmten Technologie mit angemessenen Kosten gefertigt wer-
den konnen. Gleichzeitig sollte die Design-Idee und weitere wichtige
Qualitdtsmerkmale, wie das Layout der Panele und die Glattheit der
Flache, eingehalten werden. Die Produktion von gekriimmten Pane-
len basiert grosstenteils auf Mulden (Press- oder Gussformen). Da die
Fertigungskosten einer Mulde oft weit hoher liegen als die Kosten,
um mit der Mulde ein Panel zu erzeugen, ist es wichtig, eine Mulde
fiir moglichst viele Panele wiederverwenden zu konnen. Verschiedene

Bedingungen wie die eingeschrinkte Geometrie der Muldenform und
Toleranzen fiir Positions- und Normalenkontinuitdt zwischen benach-
barten Panelen miissen dabei eingehalten werden. Wir stellen einen
Panelisierungs-Algorithmus vor, der diskrete und kontinuierliche Op-
timierung kombiniert, um die Kosten zu minimieren und gleichzeitig
die geometrischen Bedingungen einzuhalten. Der Algorithmus ist
tahig, komplexe Anordnungen mit tausenden von Panelen automa-
tisch zu berechnen. Wir demonstrieren die praktische Relevanz von
unserem System anhand aktueller Projekte der Freiformarchitektur.

Acknowledgements

A PhD means suffering. Not necessarily for the PhD student but for
many people around him. Therefore my first and biggest thanks goes
to Isa, understanding me, enduring me, and giving me everything I
needed to overcome even the hardest times. Thank you Vreni and
Jacques, for being the best parents in the world, for giving me uncon-
ditional support and love. This PhD is the fruit of your hard work and
your trust in me. Thank you Lucien, Livio, and Lea, you are always
in my heart. Thank you Matthias, Sam, and Yves. Even to have one
of you as a friend is a treasure no money in the world can buy. I but
humbly bow to the fortune of having the three of you.

I thank Prof. Mark Pauly for being a supervisor one can only wish
for as a PhD. Being an outstanding researcher he supported me to
develop my own research qualities and acknowledged both my weak-
nesses and strengths. He was always open to discuss our agreements
and disagreements, was very understanding, open minded, and con-
tagiously enthusiastic which provided an ideal creative environment.
I am truly grateful for all this.

I thank Prof. Helmut Pottmann for giving me the opportunity to jump
into the fantastic field of Architectural Geometry and believing in my
qualities. I thank my other collaborators Prof. Niloy Mitra, Mario
Deuss, Martin Kilian, Alexander Schiftner, Heinz Schmiedhofer, and
Robert Sumner, without whom this work would not have been possi-
ble. And I thank Pierre Alliez, Mirela Ben-Chen, Mario Botsch, David
Cohen-Steiner, Joachim Giesen, Eitan Grinspun, Hao Li, Balint Mik-
los, Filip Sadlo, Johannes Wallner, and Camille Wormser for fruitful
discussions about my research.

I thank the bachelor and master students Dominik Erni, Cyril Perrig,
Moritz Bacher, Gerhard Rothlin, Sandro Loschhorn, and Rolf Weilen-
mann I had the pleasure to supervise and work with.

I thank Prof. Mario Botsch and Prof. Markus Gross for co-examining
my PhD thesis and defense.

A very special warm thanks goes to my former math teacher and men-
tor Hannes van der Weijden: He kindled my love for mathematics and
engineering, enforced my self-confidence, and by that set the first and
most important tracks for my successful education.

Thank you all!

This thesis was supported by the Swiss National Science Foundation.

Contents

1 Introduction

2 Fundamentals
Surface Geometry in R®
2.1.1 Curvesand Surfaces
2.1.2 Tangentsand Normals
213 Metric L L o
2.1.4 Metric Deformation
2.1.5 Curvature L.
2.1.6 Fairness
Least Squares Optimization
2.2.1 The Gauss-Newton Algorithm
2.2.2 The Levenberg-Marquardt Algorithm
2.2.3 Implementation Insights

2.1

2.2

3 Constraint-Based Modeling

Introduction oo Lo
3.1.1 Related Work
Problem Formulation
3.2.1 Modeling Constraints
3.2.2 Deformation Control
Discretization
3.3.1 Surface Energies
3.3.2 Modeling Constraints
3.33 Discussion 000
Optimization.
Constraint-Based Shape Editing
Curvature-Domain Shape Processing

3.1

3.2

33

3.4
3.5

37

Discussion

...........................

Contents

4

Paneling Architectural Freeform Surfaces 81
4.1 Introduction o, 81
4.1.1 Contributions, . 85
4.1.2 Related Work 86
4.2 Problem Specification. 0. 88
421 Terminology 88
4.2.2 The Paneling Problem 91
4.3 Paneling Algorithm 92
4.3.1 Continuous OptimizationStep 94
4.3.2 Discrete OptimizationStep 99
4.3.3 Interleaved Iteration 102
4.4 Evaluation and Discussion 103
Conclusion and Outlook 117
51 Impact 0 L. 118
52 Outlook. 119
Optimization 125
A.1 Derivatives of Geometric Properties Evaluated on Trian-
gleMeshes o L. 125
A.1.1 Derivatives of Area, Length, and Angle 125
A.1.2 Curvature Derivatives 126
A.2 Element-Weighted Set Cover 130
A21 Problem 130
A22 Algorithm 132
A23 Analysis 0oL 133

B Metric Space for Approximate Panel-Segment Distances 137

Bibliography 141

Curriculum Vitae 153

11

C H A P T ER

Introduction

The rise of the computer has enabled the digital representation, ac-
quisition, reconstruction, analysis, and processing of geometric objects
and the efficient execution of complex geometric computations and al-
gorithms. Over the last century, digital geometry processing has grown
to be a significant research area at the intersection of applied mathe-
matics, computer science, and engineering, covering a wide range of
applications from multimedia, entertainment, and classical computer-
aided design to biomedical computing, machine engineering, and ar-
chitecture.

In digital geometry, surface processing is concerned with the creation,
manipulation, optimization, and approximation of form. The form,
in the context of surface processing the shape of a two dimensional
surface embedded in three dimensions, is an essential aesthetic and
functional attribute. It determines how a geometric object is perceived
and how well it performs a given task.

By modeling virtual surfaces artists have created realistic or styl-
ized characters that entertain us in movies and computer games (Fig-
ures 1.3, 1.4). Surface models are used to design, simulate, and man-
ufacture ships, airplanes, and cars (Figure 1.1). In architecture, a long

1 Introduction

Figure 1.1 Digital surface model of a car generated by an iterative refine-
ment of a coarse control mesh. (Figure taken from [BPK " 08], kindly provided
by Botsch and colleagues.)

\
il]

Figure 1.2 Architectural freeform surface consisting of single-curved
strips. (Figure from [PSB"08], kindly privided by Pottmann and colleagues.)

standing source for the application and inspiration of geometric prob-
lems, surface processing has reached unprecedented relevance with
the emergence of architectural freeform structures where a general
smooth surface replaces the classical, geometrically limited composi-
tion of flat walls and roof (Figure 1.2).

A central driver in the processing of surfaces is the geometric con-
straint. A geometric constraint both controls and restricts the form of
a surface and can serve as an interface for a user to manipulate form
or directly be imposed by structural or economical limitations defined
in the problem statement. This thesis reviews existing techniques and
presents new approaches to effectively enforce complex geometric con-
straints for surface processing.

Particularly, this thesis offers the following core contributions:

* We identify the presence and use of geometric constraints in sur-
face modeling and freeform architecture, two principal applica-
tion domains of digital geometry processing.

* We propose and investigate computational tools and algorithmic
frameworks based on a sound mathematical foundation to imple-
ment a broad set of advanced geometric constraints for surface
processing and, using these tools,

* we evaluate the potential and the limitations of these constraints
for modeling and architecture by numerous comparisons and
case studies.

In this thesis we have grouped our findings according to their applica-
tion domain and we present the application-specific technical contri-
butions for effective constraint-based surface processing in the corre-
sponding Chapters 3 for modeling and 4 for freeform architecture.

In surface modeling, geometric constraints offer means of controlling
the shape of a geometric model. Current methods mostly rely on po-
sition constraints, specified either by a skeleton or a polygonal control
cage to perform a deformation of the entire space in which the surface
is embedded (e.g., Figure 1.3) or by a control handle directly on the
surface itself (e.g., Figure 1.4). See Chapter 3 for an extensive discus-
sion of previous work. In this thesis we broaden the toolset for surface
modeling and demonstrate how advanced constraints such as the pre-
scription of length (see Figure 1.5) and further geometric properties
provide novel and flexible tools for shape design and exploration.

In freeform architecture, geometric constraints mostly originate from
aesthetic, structural, or economical requirements in the production
process. For example, freeform surfaces are usually assembled as a
collection of smaller elements, called panels (see, e.g., Figure 1.6a).
The approximation of an architectural design with such panels under-
lies practical constraints such as that the maximal gap between neigh-
boring panels and the angle in which two neighboring panels meet
(called kink angle) should remain below given thresholds. Existing
paneling techniques focus on specialized panel types such as planar

1 Introduction

Figure 1.3 Editing of a surface model by position constraints using a con-
trol cage. The position constraints define a deformation of the space in which
the surface is embedded. (Figure taken from [LLCO08], kindly provided by

Lipman and colleagues.)

Figure 1.4 Editing of a surface model by specifying position constraints
directly on the surface using a control handle. (Figure taken from [SCOL" 04],

kindly provided by Sorkine and colleagues.)

Length Constraint Original Length Constraint

Figure 1.5 Constraint-based surface modeling using length constraints.
Constraining the length of the red curve on the vase does not have a unique
solution. The deformations shown on the left and right are but two of infinitely
many valid solutions. In this thesis we present techniques to effectively enforce
advanced geometric constraints while giving the user explicit control on the
deformation outcome.

panels (e.g., Figure 1.6a) or developable panels (e.g., Figure 1.6b). Due
to the limited geometry of these panel types, quality measures like the
gap and kink angle between panels can be optimized but cannot be
explicitly controlled through constraints. See Chapter 4 for a detailed
analysis of previous work.

Recent technological advances enable the large-scale production
of double-curved panels that allow panelizations of architectural
freeform surfaces with superior inter-panel continuity compared to
single-curved panels. The fabrication of double-curved panels, how-
ever, incurs a higher cost, depending on the complexity of the panel
shapes and the material and panel manufacturing process. A cost-
effective paneling should use as many simple panels as possible and
reuse the same panel shapes for different parts of the surface. With
the integration of double-curved panels, therefore, the specification of
geometric constraints becomes an essential tool to manage the tradeoff

1 Introduction

(a) A freeform surface approximation with (b) A paneling with developable surface
planar panels according to [LPW ' 06] re- strips according to [PSBT08] results in a
sults in a maximum kink angle of 11°. maximum kink angle of 6° between strips.

3 |

KA

/T 7

(c) Paneling algorithm presented in this the- (d) Paneling algorithm presented in this
sis using a kink angle constraint of 1°. thesis using a kink angle constraint of 1/4°.

Figure 1.6 Comparison with state-of-the-art algorithms to panelize archi-
tectural freeform surfaces. Example taken from a facade designed by architects
Moatti et Riviere for an entry to a competition on redesigning the pavilions on
the first platform of the Eiffel Tower, panelized by Evolute (www.evolute.at)
and RFR (www.rfr-group.com). (a, b) Paneling using planar elements or
developable surface strips. The surface reflections indicate high kink angles
(angles between neighboring panels). (c, d) The same facade panelized using
the paneling algorithm introduced in this thesis that allows the prescription of
constraints for the maximal kink angle and other geometric quality measures
enabling smooth surface approximations.

between cost and approximation quality. We introduce a general pan-
eling framework that incorporates double-curved panels and enables
direct specification of important geometric constraints on quality and
fabrication, such as the maximal gap between panels and the maximal
kink angle to quarantee a smooth approximation (see Figure 1.6).

Publications. Most of the contributions discussed in this thesis have
been presented in the following publications:

MicHAEL EIGENSATZ, ROBERT W. SUMNER, AND MARK PAULY.
Curvature-Domain Shape Processing.
Computer Graphics Forum (Proceedings of EUROGRAPHICS), 2008.

MiCHAEL EIGENSATZ AND MARK PAULY.

Positional, Metric, and Curvature Control for Constraint-Based
Surface Deformation.

Computer Graphics Forum (Proceedings of EUROGRAPHICS), 2009.

MicHAEL EIGENSATZ, MARTIN KIiLIAN, ALEXANDER SCHIFTNER, NILOY
MitrA, HELMUT POTTMANN, AND MARK PAULY.

Paneling Architectural Freeform Surfaces.

ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2o1o0.

MicHAEL EIGENSATZ, MARIO DEUSS, ALEXANDER SCHIFTNER, MARTIN
KirLiaN, NiLoy MITRA, HELMUT POTTMANN, AND MARK PAULY.

Case Studies in Cost-Optimized Paneling

of Architectural Freeform Surfaces.

Advances in Architectural Geometry, 2010.

Organization. Before presenting our research in constraint-based
surface processing for modeling (Chapter 3) and freeform architecture
(Chapter 4), we provide a detailed review of the underlying fundamen-
tal concepts in surface geometry and optimization theory in Chapter 2,
including valuable insights gained throughout this PhD. Chapter 5
concludes this thesis and provides an outlook on future work.

C H A P T ER

Fundamentals

This chapter explains the fundamental concepts of geometry and opti-
mization employed in the subsequent chapters and provides the inter-
ested reader with references for further reading. Readers familiar to
these topics may skip this chapter or simply use it as a reference.

2.1 Surface Geometry in IR®

This thesis is concerned with surfaces embedded in 3-dimensional
euclidean space. Many concepts described in this chapter, however,
translate to higher dimensions and even to surfaces not embedded in
euclidean space (see [dC9z2]).

This chapter offers a qualitative, descriptive introduction to surface
geometry in order to maximize readability and provides sufficient
background to understand the subsequent chapters. For a thorough
mathematical treatment of differential geometry the reader is referred
to the classical book Differential Geometry of Curves and Surfaces by
Do Carmo [dC76]. The work of Botsch et. al. [BPK " 08, Botos] provides

2 Fundamentals

a good overview and entry point to the study of surface discretization
using polygonal meshes.

2.1.1 Curves and Surfaces

A 1-dimensional curve embedded in IR® is a map ¢ : I — IR? of an
open interval I = (a,b), a,b € R, onto IR? (Figure 2.1).

Osculating circle

Curve c(t)

Figure 2.1 A curve ¢ C IR® parameterized by arc length and derivatives.

Usually, the map c(t) = (cx(t),cy(t),c.(t))" is assumed to be differen-
tiable (all three components have well defined derivatives). A regular
curve is a differentiable curve with ¢’(¢) # 0 for all + € I. The regu-
larity of a curve is an important property, because it implies that the
curve has a well defined tangent for each point on the curve (see Sec-
tion 2.1.2) and enables the definition of further differential properties.
If the length of the curve from some fixed point on the curve to the
point c(t) is always t, the curve is said to be parameterized by arc
length. Since the derivative of the curve with respect to the parameter
t measures the advancement on the curve with respect to the advance-
ment of ¢, for differentiable curves parametrized by arc length it holds
that |c/(t)| = 1 for all t € I. Given an image ¢(I) C IR® of a continuous
curve there always exists a parameterization by arc length of that curve
with the same image.

10

2.1 Surface Geometry in IR

The arc length parameterization is a canonical parameterization of a
curve. For surfaces, such a canonical parameterization does not exist
in general. For surfaces, it is not even generally possible to have a
global regular parameterization. A simple example is the sphere: The
standard parameterization of the sphere using spherical coordinates
has non-regular points at the top and bottom, where the derivatives
with respect to one variable are all 0.

Surfaces are elegantly defined as subsets of IR*: A subset M C IR’ is a
(topological) 2-manifold, if for every point p € M there exists a local
open set neighborhood V C IR® to cut out a local neighbohood patch
V N M that can be continuously deformed into (is homeomorphic to)
a planar disc (Figure 2.2). This simple definition ensures a surface
without self intersections. For surfaces with boundaries the definition
has to be adjusted by replacing planar disc with planar halfdisc. A 2-
manifold is also a submanifold of the 3-dimensional euclidean space,
since M is a subset of IR’ and IR is itself a manifold.

Figure 2.2 For every point on a 2-manifold surface there exists a local
neighborhood patch, cut out by a local neighborhood V, that can be continu-
ously deformed to a planar disc.

A (topological) 2-manifold can have sharp creases and other differen-
tial singularities. A subset M C IR’ is a differentiable 2-manifold, if
for every point p € M there exists a local open set neighborhood
YV C IR’ to cut out a local neighbohood patch ¥V N M that can be
smoothly deformed into (is diffeomorphic to) a planar disc. Since the

11

2 Fundamentals

deformations of local neighborhoods to planar discs have to be smooth
(differentiable), a differentiable 2-manifold defines a smooth surface. A
differentiable 2-manifold in IR® is also called a regular surface.

As with curves, the regularity of a surface is an important prerequisite
for differential geometry, since it enables to define tangent planes and
other differential properties of a surface. In this thesis we will assume
the surfaces to be piecewise differentiable 2-manifolds with bound-
aries, meaning that the surfaces are generally smooth but can contain
lines of sharp creases.

A regular local parameterization of a differentiable 2-manifold is a dif-
ferentiable map f : U — IR’ from some 2-dimensional domain U C IR*
to a local neighborhood M, C M around a point p € M (Figure 2.3),
where f and its inverse are continuous (f is a homeomorphism) and
f is an immersion. The requirement of an immersion means, that the
Jacobian of f has maximal rank (rank 2). The rank of the Jacobian
is important since the Jacobian directly relates to the tangent plane
and other differential properties of a surface (see Section 2.1.2). Even
though it is not generally possible to globally describe a regular sur-
face by a regular parameterization, it is always possible to have regular
local parameterizations of a neighborhood around any point on a reg-
ular surface.

Figure 2.3 Local parameterization f(u,v) : U — My of a surface M
around a point p = f(uyp, vp) and iso-parameter curves f(u, up) and f(vy, v).

12

2.1 Surface Geometry in IR

Local parameterizations are a useful analytic tool since they provide
a local 2-dimensional coordinate space at any point of a surface: ev-
ery point on the surface in the local neighborhood can be uniquely
assigned a 2-dimensional coordinate in U. There exists a great variety
of literature on how to compute and optimize parameterizations for
surfaces (see, e.g., [FHos, SPRo6, HLSo7] for an overview).

In digital surface processing, curves and surfaces are often discretized
to enable efficient computation, representation, and visualization. In
this thesis we discretize curves as piecewise linear paths (polylines).
Surfaces are discretized as piecewise linear triangular meshes (Fig-
ure 2.4). As demonstrated in [BPK' 08, Botos] this piecewise linear
discretization provides an efficient and flexible geometry representa-
tion.

M

Figure 2.4 Surface discretization by a triangle mesh.

2.1.2 Tangents and Normals

The tangent vector of a curve at a point ¢(¢) is the direction in which
the curve is advancing and can be computed by the curves derivative
c'(t)/|c(t)|, or simply c'(¢) for a curve parametrized by arc length
(Figure 2.1). The normal of a curve in R® requires the definition of
curvature and is thus defined in Section 2.1.5.

The tangent vectors of all curves passing through a point p on a regular
surface M all lie in (and define) a plane called the tangent plane T M.
Given a regular local parameterization f(u,v) : U — IR® around p (i.e.,
£(0,0) = p), the tangent plane is spanned by the two columns of the
Jacobian matrix of f at (0,0). This holds because the two Jacobian

13

2 Fundamentals

colums are by definition of regularity linearly independent and each
column is the tangent vector of one of the two isoparameter curves
f(u,0) and f(0,v) (Figure 2.3). The Jacobian J 0 of f at (0,0) can
thus also be used to map any vector (1,v)" € IR* to the tangent plane
at p by matrix-vector multiplication: Jg o 0)(u, v)' € TM,.

The surface normal n(p) at point p is defined as the unit vector
orthogonal to the tangent plane TM,. The normal can be computed
by the cross product of the two columns of the Jacobian matrix. The
surface normal has no unique orientation. If there exists a smooth,
consistently oriented, normal field nx((p) on a surface, the surface is
called orientable. A famous example of a non-orientable surface is the
Mobius strip.

Normals and tangent planes on discrete surfaces such as triangle
meshes are not uniquely defined. In general when discretizing differ-
ential quantities the choice of discretization depends on the properties
of these quantities that should be transfered to the discrete setting. For
example one would usually want to define a tangent plane and a nor-
mal such that they stand orthogonal to each other. A simple way to
define vertex normals on a triangular mesh is as a weighted average
of the normals of all the adjacent faces where the face areas or the in-
cident triangle angles are chosen as weights (see [BPK ' 08] for further
possibilities).

2.1.3 Metric

The (Iocal) metric of a curve or surface describes the local distances be-
tween points on curves and surfaces. On surfaces, the metric includes
information on angles and areas. Since a surface can be curved, not
all relations between metric properties (angles, lengths, area) in IR* di-
rectly translate to the surface space. The metric of a curve or surface is
often described by the metric of its (local) parameterization that relates
distances in parameter space to distances on the curve or surface.

On parametrized curves c(t) : I — IR, the metric information is en-
coded in the first derivative ¢’(¢). The length of a regular curve can be
computed as [|c/(t)|dt.

14

2.1 Surface Geometry in IR

The local metric properties length, angle, and area on a surface can all
be computed with the scalar product of vectors in tangent space. The
metric of a regular surface M is thus defined by the function g, that
assigns to every point p € M the scalar product

gp(xy) = (xy) forx,yeTM,. (2.1)
The function g is called the First Fundamental Form of a surface.

The metric of a regular parameterization f : U — IR’ is defined by the
function g,) that assigns to every point (#,v)" € U the scalar product

Suo) (1) 1= <Jf|(u,v)%]f\(u,v)7’l> for p,n € R?. (2.2)

The function g, is called the First Fundamental Form of a
parametrization. As described in Section 2.1.2 the Jacobian Jy () of
f at (u,v) is used to map the direction vectors y and % in parameter
space to vectors in the tangent plane. The First Fundamental Form of
a parameterization is therefore sometimes also defined as the square
symmetric matrix J¢J,.

With the use of the First Fundamental Form, the length of a path on
the surface c(t) := f(x(t)), where f : U — IR’ is a regular local pa-
rameterization and r : I — U is a 2-dimensional path in the parameter
domain U, can be computed as

Le) = [/se (¢/(0), ¢ ()t 23
_ /1 V8t (F(8), 7 (1))t (2.4)

Since for the computation of lengths the two arguments of g are the
same, the quadratic form g(x) = g(x,x) is sometimes called the First
Fundamental Form as well.

The area of a surface patch P C M of a surface M with a regular
local parameterization f : U — P can be computed as

A(P) :/u,/det(g(u,v))dudv, (2.5)

where the determinant det(g(,.)) of the First Fundamental Form can

be computed as the determinant of the matrix EI(u,v)Jf\(00) and is the

15

2 Fundamentals

square of the area spanned by the two column vectors of J). The
determinant of the First Fundamental Form defines the infinitesimal
area distortion at the coordinates (u,v). The infinitesimal area element

dA is defined as dA = ,/det(g(,.))dudv and can be used to convert

integrals over the parameter domain to integrals over the surface area.
Equation 2.5 can therefore also be written as

A(P) = /P dA. (2.6)

Metric properties of a surface such as the length of a path on the
surface or the area of a surface patch are independent on the cho-
sen parameterization and only depend on the geometry of the sur-
face itself. Nevertheless, parameterizations and their First Fundamen-
tal Form provide important tools to analytically compute differential
properties.

On discrete surface approximations such as triangular meshes that ap-
proximate surfaces explicitly via geometric elements, e.g., triangles,
metric properties such as lengths, areas, and angles are usually straight
forward to compute using vector geometry. In Chapter 3 we investi-
gate ways to compute and use discrete metric quantities for constraint-
based surface processing.

2.1.4 Metric Deformation

In this thesis we will extensively work with surface deformations. A
regular deformation can be defined as a differentiable map d : M, —
M, C R? that maps one regular surface M, to another M. A regular
deformation inflicts no self intersections and defines a smooth one-to-
one mapping between the original and the deformed surface.

A deformation deforms the local metric of a surface. This metric de-
formation is again encoded in the First Fundamental Form (compare
Section 2.1.3). Since the function domain of d is not a euclidean space
but a (possibly curved) manifold, the definition of the First Fundamen-
tal Form of a deformation requires differential calculus on manifolds.

16

2.1 Surface Geometry in IR

Many notions from differential calculus in euclidean space translate
to manifolds (see [dC76] for an extensive discussion). The First Fun-
damental Form requires the definition of the differential, or the di-
rectional derivative, Dd, of the function d at point p € M,. The
differential is a function Ddy, : TM,, — TM,q4(p) that maps vectors
(directions) in the tangent plane of the original surface to vectors in
the tangent plane of the deformed surface (see Section 2.1.2 for the
definition of tangent plane).

Analytically, the differential Ddp(x) at point p evaluated at vector
x € TM,p can be computed by mapping any curve ¢ C M, that
passes through p with tangent x to the deformed curve d(c) C M,
and computing the tangent vector of the deformed curve at d(p).

For a local surface parameterization f, we represented the differen-
tial with respect to the canonical basis by the Jacobian matrix of f
evaluated at f!(p) (see Section 2.1.3). A Jacobian representation of
the differential of the deformation function d at point p € M, can
be constructed geometrically by mapping two orthogonal unit tan-
gent vectors ey, e; € TMo,p to the corresponding tangent vectors
Dd,(e1), Ddp(e2) € TM;gq(p) on the deformed surface (Figure 2.5).

—

M()?

TM o,p

\

Figure 2.5 The deformation function d locally deforms circles to ellipses.
Original surface M,, deformed surface M. Orthogonal basis vectors eq, e;
in the tangent plane TM, , of the original surface. The corresponding di-
rectional derivatives Ddy(e1), Ddy(ey) of the deformation lie in the tangent
plane T M g(p) of the deformed surface.

17

2 Fundamentals

The two vectors Ddy(eq), Ddp(ey) are the column vectors of the Ja-
cobian Jgje, e,[p Of the deformation function at p locally parametrized
by the coordinate basis {ej, e;} spanning a 2-dimansional euclidean
space. The First Fundamental Form of a deformation d at point p
with respect to the basis {ej,e;} can be represented by the square
symmetric matrix

-
Jd\el,e2|de\e1,e2|p° (2.7)

As with the First Fundamental Form of local surface parameterizations
discussed in Section 2.1.3, the metric information encoded in the First
Fundamental Form of a deformation is independent on the specific
choice of the parameterization basis {e;,e;}. The First Fundamental
Form of a deformation defines a scalar product of tangent vectors in
the deformed surface with respect to tangent vectors in the original
surface and encodes how tangent vectors are stretched and turned by
the deformation. As depicted in Figure 2.5 a regular surface defor-
mation locally deforms discs into ellipses. The shape of the ellipse
is described by the First Fundamental Form of the deformation. The
square roots of the eigenvalues of the First Fundamental Form (i.e., the
singular values of the Jacobian of d) define the major and minor radii
of the ellipse. The local area change induced by the deformation, for
example, can be computed by the square root of the determinant of
the First Fundamental Form. In Chapter 3 we discuss ways to use and
discretize metric distortion induced by surface deformation.

2.1.5 Curvature

Curvature measures how curved, or bent, a curve or a surface is. It
is defined as the change of the tangent, or equivalently the change
of the normal, in a given direction. The curvature x of a curve c(t)
parameterized by arc length can be computed as the derivative of the
tangent vector ¢'(t):

k() = ["(t)] (2.8)

18

2.1 Surface Geometry in IR

The second derivative ¢”(t) is called the curvature vector and is always
orthogonal to the tangent (Figure 2.1). The normal n.(¢) of a curve is
thus defined as

C//(t) B C//(t)

(0]~ w) =9
wherever the curve has non-zero curvature. The curvature of a circle
is the inverse of its radius 1/7. The circle that touches the curve at
point c(t) with tangent vector ¢’(¢) and that has the same curvature as
the curve at ¢ is called the osculating circle (Figure 2.1). The osculating
circle has center c(t) + ¢”(t)/|c”(t)|? and is the best second-order local
approximation of the curve.

ne(t) =

Since a surface is 2-dimensional, there are several measures of curva-
ture at a point on the surface. The normal curvature x,(p, x) at a point
p on a regular surface M in the tangent direction x € TM, is de-
fined as the curvature of the curve ¢, x C M obtained by intersecting
M with the normal plane N, spanned by x and the surface normal
ny(p) (see Figure 2.6).

Figure 2.6 The normal curvature is the curvature of the curve ¢, x obtained
by intersecting the normal plane Ny, at p, spanned by surface normal n(p)
and direction x, with the surface M.

Without loss of generality we assume cp x to be parameterized by arc
length and ¢(0) = p. The normal curvature can therefore be computed
as

Ka(P,%) = g a(0)] = (hx(0), mar(cpa(0))). (210)

19

2 Fundamentals

/
Since (¢}, (1), nut(cpa(F))) = 0, it also holds ({chx(t), mu(cpx(t))) =
0 and therefore:

k() = (cpx(0), mut(epx(0))) (2.11)
= — (cpx(0), My (cpx(0))) (2.12)
= (cpa(0), ~Dniep(chx(0))) (2.13)

Equation 2.13 makes again use of the differential D (directional deriva-
tive - see Section 2.1.4) and directly confirms the statement at the be-
ginning of this section that curvature measures the normal change in a
given tangent direction. The differential L, := —Dnyp : TM, — R’
of the normal field of a surface is called the Weingarten Map. An
interesting fact is that the range of the Weingarten Map is again the
tangent plane of the surface, that is, the Weingarten Map is actually a
function L, : TM, — TM,,.

Using the Weingarten Map and Equation 2.13 one can derive the gen-
eral function

hp(x,y) = (x, —Dnpp(y)) = gp (X, Lp(y)), forx,y € TM,,.
(2.14)
The function 4 is called the Second Fundamental Form of a surface.

The Second Fundamental Form measures the normal change at point
p in tangent direction y restricted to tangent direction x. The nor-
mal curvature in unit direction x can therefore be computed using the
Second Fundamental Form as

ka (P, x) = hp(X,X). (2.15)

In fact, as we shall see now, the Second Fundamental Form stores
all information on surface curvature: The Weingarten Map is a lin-
ear map and symmetric with respect to the scalar product g, that
is gp (X, Lp(y)) = gp (Lp(x),y) and therefore also h is symmetric
hp(x,y) = hp(y,x). This implies, that the extremal values of /1, (x, x)
are the eigenvalues x;(p) and x> (p) of the Weingarten Map L, and the
directions x;(p) and x;(p) to obtain these values are the orthogonal
eigenvectors of Lp, ie., Lp(X{121) = %{121X{12}- The normal curva-
tures x1(p) and x,(p) are the maximum and minimum of the normal

20

2.1 Surface Geometry in IR

curvatures at point p in all directions and are called the principal cur-
vatures. The corresponding orthogonal tangent directions x;(p) and
x2(p) are called the principal directions. The mean curvature H(p) is
the average, the Gaussian curvature K(p) is the product of the princi-
pal curvatures:

H(p) := <1 (p) ;KZ(P) = %trace(LP) (2.16)
K(p) := xa(p)ra(p) = det(Lp) (2.17)

Similar to the First Fundamental Form, the Second Fundamental Form
can also be represented by a square symmetric matrix Wy

hy(x,y) = xWopy. (2.18)

The matrix Wy, is representing the Weingarten Map in the canonical
basis of R® and is sometimes called the Weingarten Matrix or the
Shape Operator. The two non-zero eigenvalues of the matrix W and
the corresponding eigenvectors are again the principal curvatures and
directions. The Weingarten Map, the Second Fundamental Form, and
the Weingarten Matrix can also be defined for local parameterizations
(in which case W is a 2 X 2 matrix, [dC76]). It is a classical result from
differential geometry that the First and Second Fundamental Form to-
gether uniquely determine the geometry of a regular surface [dC76]).

There are numerous methods of how to discretize curvatures and the
Second Fundamental Form on triangle meshes. See [BPK'08] for
an overview. Discrete curvatures are often derived by locally fitting
smooth elements to the discrete representations (e.g., [CPo5, Glog]),
or using the Taylor approximation and other approximation strate-
gies (e.g., [CS92, Taugsa, HSo2, MDSBo2, CSMo3, Ruso4] and for
curves [LBSos]). The emerging field of discrete differential geome-
try [BSog] provides a sound mathematical framework to transfer prop-
erties and techniques known from classical differential geometry to
discrete surfaces.

21

2 Fundamentals

2.1.6 Fairness

In many applications of digital geometry processing the fairness, that
is, the aesthetic quality of curves and surfaces, is an important ob-
jective. High aesthetic quality of curves or surfaces often means low
variation of first or higher order derivatives. Fairness of derivatives
is sometimes qualitatively called smoothness of a curve or surface. A
low variation of derivatives is related to and motivated by physical
properties of real world materials like the bending behavior of thin
plates of metal or the area minimizing property of membrane surfaces
such as soap bubbles. There exists a great amount of literature on how
to ensure and optimize the aesthetic quality of curves and surfaces
(see [BPK " 08] for an overview).

A simple example is the differential variation of curves. k-th order
fairness of a curve parameterized by arc length can be defined as min-
imizing the functional

Efui(c) = [190, (2-19)

Minimizing E}W produces curves with minimal length and corre-

sponds to the physical behavior of rubber bands. Minimizing E% .
tries to make the curve locally as straight as possible, given other pos-
sibly conflicting objectives, and corresponds to the bending behavior
of thin wooden rods. Minimizing E?air means low variation of curva-
ture, that is, the curve should maintain its curvature as well as possible
along I. And so on.

On polylines, the variational (energy minimization) problem of min-
imizing Ej‘cmr can be solved by discretizing the derivatives of ¢ using
finite differences, transforming the problem to a (linear) least squares
problem (see Section 2.2). EZ . for a polyline through the points {p;},

for example, can be discretized as

1

Pi-1— 2pi+ Pir1)
E%M{Pf}):Z(l R)h, (2.20)

22

2.1 Surface Geometry in IR

where 1§ is the average edge length

I — pit1 — pi| + |pi — pi-1]
_ : .

(2.21)

In order for the minimization problem to be well defined, additional
objectives (or boundary conditions) are required.

On surfaces, this general concept of k-th order fairness applies as well
and is in practice often solved by transforming the variational prob-
lem to a partial differential equation involving the laplacian using the
Euler-Lagrange equation [Taugsb, DMSBgg, BPK ™ 08].

The notion of fairness is also related to deformations: A deforma-
tion should often maintain or even improve the fairness of a curve or
surface, which may contradict other deformation objectives. In Chap-
ters 3 and 4 we will apply and discuss various fairness measures for
constraint based surface processing.

23

2 Fundamentals

2.2 Least Squares Optimization

This section describes techniques and provides practical insights to
solve the following optimization problem:

The Least Squares Problem. Given a vector of m functions f =
(fi,--, fm)" : R" — R" that depend on n variables x = (x1,...,x,)"
with m > n. Find the vector x* that minimizes all the functions simul-
taneously in a least squares sense:

x" = arg min F(x) (2.22)
R , 1 , 1.,
F) = 2 3 (600 = S0P = 26)T6x). (223

i=1

The factor 1/2 does not influence the result but is introduced for nota-
tional convenience in the following discussion.

Motivation. Many optimization problems in digital geometry pro-
cessing are least squares problems as defined by Equations 2.22-2.23.
Fitting a set of points with a curve or a surface, for example, involves
minimizing the squared distances between the points and the curve
or surface. The square norm is used since it represents the most even
and natural combination of different objectives. The iso-regions of the
squared distance to a point in Euclidean space are spheres. The use
of the squared distances for the application of point fitting can also be
motivated by the assumption that the points represent discrete mea-
surements of the curve or surface that where subject to gaussian dis-
tributed measurement errors [Marog]. Another reason for the squared
nature of the objective function F can be the approximation of physical
properties of real-world objects as for example the fairness functionals
discussed in Section 2.1.6. Qualitatively speaking, squaring the func-
tions f; penalizes larger errors significantly more than small ones, lead-
ing to an even distribution of the total error over all functions f;. The
functions f; can also be seen as a set of possibly conflicting constraints
fi = 0. The least squares problem defines a possible way to resolve
the issue that not all constraints can be met simultaneously. From this
viewpoint it is also clear why there have to be more constraints than
variables (m > n) for the optimization problem to be well defined.

24

2.2 Least Squares Optimization

Context. The least squares problem is a special instance of the
general optimization problem x* = arg min, F(x), since the objective
function F has the special structure of a sum of squares. This spe-
cial structure of F enables efficient solutions with superlinear conver-
gence without the need of computing second derivatives as required
by more general optimization methods. The fact that second deriva-
tives are not required can be very advantageous, especially if the
derivatives of the involved terms f; are very hard and costly to com-
pute. If the constraints f; have a simple form and the second deriva-
tives can be efficiently computed, however, more general optimization
schemes relying on second derivatives can produce better results (see
e.g., [DS87, GMW8g, Fleoo, Ruso6, PFTo4]). Since the least squares
problems introduced in this thesis involve very complex constraints f;,
this chapter focuses on algorithms exploiting the least squares struc-
ture and requiring first derivatives only. For further details on least
squares problems and algorithms we direct the interested reader to
the comprehensive literature on this topic, e.g., [Bjog6, MNTo4].

Linear Least Squares

If all the functions f; in Equation 2.23 are linear, the problem is called
a linear least squares problem. In this case, the vector f has the form

f(x) =b — Ax, (2.24)

where A is a rectangular m x n matrix and b is a vector with m entries.
At the minimum x* the gradient of the objective Function VF(x) will
be the zero vector. The gradient of F can be computed as

VF(x) = —A'" (b — Ax). (2.25)

Therefore, the solution x* can be obtained by solving the linear system
of equations called the Normal Equations

(ATA)x* = A'b. (2.26)

One problem with the normal equations is that the square symmetric

matrix (A" A) is often ill-conditioned. This can be resolved by replac-
ing A with its QR-decomposition (or thin QR-decomposition, see [GL96])

A = OR, (2.27)

25

2 Fundamentals

where Q is an m X n matrix with orthonormal columns (that is,
Q'Q = 1) and R is an upper triangular n X n matrix. Applying the
QR-decomposition to A the normal equation transforms to

R'Q'ORx* =R'Q'b (2.28)
& R'Rx* =R'Q'b (2.29)
& Rx* = Q'b. (2.30)

The linear Equation 2.30 can be efficiently solved by back substitution.
Solving the linear least squares problem via the QR-decomposition is
more accurate and stable than via the normal equations.

The least squares problems introduced in this thesis are all Non-Linear
Least Squares Problems. We will thus focus on this more general case
for the remainder of this Chapter. Interestingly, however, the solution
of non-linear least squares problems usually involves the repeated so-
lution of linear least squares problems, as we will see in the following.

2.2.1 The Gauss-Newton Algorithm

The Gauss-Newton Algorithm is an iterative algorithm to solve non-
linear least squares problems (Equations 2.22, 2.23) without the need of
second derivatives. The Gauss-Newton Algorithm forms the basis of
more specialized algorithms like the Levenberg-Marquardt Algorithm
discussed in Section 2.2.2. The underlying concept, however, remains
the same for all Gauss-Newton type methods:

The Gauss-Newton Algorithm linearly approximates the functions
(constraints) fi(x) using the Taylor expansion at a current solution x;
as

f(x; +d) >~ f(x;) +J(x;)d, (2.31)
where J(x;) is the Jacobian matrix of f(x) evaluated at x;. With this
approximation f(x; + d) is linear and F(x; + d) is quadratic in d. Thus
the least squares problem is locally approximated with a linear least
squares problem for small d around x; and we can find the solution
d* using the normal equations (see paragraph Linear Least Squares in
Section 2.2)

()" J(x)) d* = =J(xi)" £(xi). (2.32)

26

2.2 Least Squares Optimization

The solution d* can then be added to the current solution to obtain an

improved estimation x; + d* of the minimum of F(x).

With J := J(x;), f := £(x;), the core step of the Gauss-Newton Algo-

rithm is thus

Solve (J'])d* = —J'f

Xit1 = X; +ad*

(2.33)

where « is called the Step Size and is a value in the interval (0, 1].

Discussion

* Initialization: @The Gauss-Newton algorithm requires an ini-
tialization xo of the optimization variables as input. Since the
objective function is non-linear and mostly has a complex shape
with many local minima, the performance of the Gauss-Newton
algorithm as well as the quality of the result critically depends
on this initial variable vector. Obviously, xo should already be as
close as possible to the minimum of F(x). The specific choice of
xo, however, entirely depends on the application. We will discuss
initializations of the non-linear least squares problems presented
in this thesis in Chapters 3 and 4.

Convergence, Step Size, and Line Search: d* is always a de-
scend direction at F(x;), that is, F(x; + ad*) < F(x;) for a suf-
ficiently small . Given that F has a well defined minimum
and that the Jacobian J(x;) has full rank in all steps, the algo-
rithm will thus converge if a is properly chosen in every iter-
ation. There are various, so-called Line Search, strategies to
choose a (see [MINTo4]). In the implementation details below
(Section 2.2.3) we will describe a simple but efficient line search
strategy we use throughout this thesis.

Speed of Convergence: There are two interesting interpreta-
tions of the Gauss-Newton step (Equation 2.33): The first inter-
pretation, already mentioned above, is that the non-linear least
squares problem is reduced to a linear least squares problem in
every iteration by linearly approximating f(x) at the current so-

27

2 Fundamentals

28

lution x;. From this analogy it is clear that if all the constraints
fi(x) are linear, the Gauss-Newton algorithm will converge to
the optimal solution in only one step, as the problem is in this
case a linear least squares problem. The second interpretation
is that the Gauss-Newton algorithm is nothing but the classical
Newton algorithm (see [PEFTos, MNTo4]) with an approximated
Hessian matrix of F instead of the exact Hessian Hr. The clas-
sical Newton algorithm solves the general optimization problem
x* = arg min, F(x) by iteratively solving the linear system

Hp(x;)d" = —VF(x;) (2.34)
compared two the Gauss-Newton system

(i)' J(xi)) d* = —=J(xi)" £(xi)- (2.35)

The right hand sides of Equations 2.34 and 2.35 are identical be-
cause J(x;)' f(x;) is exactly the gradient of F at x;. Therefore, the
Gauss-Newton step is the same as the Newton step except of us-
ing the matrix (J(x;)'J(x;)) instead of the Hessian of F. The ma-
trix (J(x;)'J(x;)) is the Hessian of the quadratic approximation
of F(x; + d) around x; using the linearized vector f (see Equa-
tion 2.31) and is therefore an approximation of the true Hessian
of F. Using the special structure of F (Equation 2.23) one can
show that the Hessian of F can indeed be computed as

m

x) +) fi(x)Hy,(x), (2.36)

i=1

s
!
—~
bo
~—
I
o
—~
o
~—
]
A
—~

where Hy (x) are the Hessian matrices of the components f;(x).
Equation 2.36 offers very interesting insights to the Gauss-
Newton algorithm. The classical Newton algorithm is known
to have quadratic convergence speed in contrast to the linear
convergence of steepest descent methods. The Gauss-Newton
algorithm exploits the special structure of F to obtain an approx-
imation of the Hessian only requiring first order derivatives and
uses this approximate Hessian to perform the Newton iteration.
With this adapted Newton scheme the Gauss-Newton algorithm
can achieve superlinear or close to quadratic convergence with-
out the need of second derivatives. Interestingly, Equation 2.36

2.2 Least Squares Optimization

also indicates that the quality of the Hessian approximation, and
therefore also the speed of convergence, depends on two factors:
the values and the second derivatives of the functions f;(x). The
closer the values of fi(x) are to zero, that is, the closer F is to
its best possible minimum of zero, the faster the algorithm will
converge, which is a surprising relation. The second relation is
more intuitive and also coincides with the first interpretation of
iteratively approximating the problem by a linear least squares
problem: the smaller the curvature of the functions f;(x), that
is, the more linear the functions, the faster the convergence. In
Chapter 3 we will see a specific example of how this insight can
be exploited to improve the efficiency of the optimization.

2.2.2 The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt Algorithm is a damped version of the
Gauss-Newton algorithm. A damped version of the normal equations
is solved in each step which replaces the step size of the standard
Gauss-Newton method:

Solve (J'J 4+ ul)d* = —J'f

Xit+1 = X; +d”

(2.37)

I is the identity matrix and ¥ € RR" is the damping factor. The
Levenberg-Marquardt algorithm is essentially a hybrid version be-
tween the gradient descend and the Gauss-Newton methods. If the
damping factor yu is large we get

1 1
d*~ ——J'f = ——VF(x 2.38
VJ VV (x) (2.38)
and therefore a small step in the direction of steepest descent is per-
formed. If y is small, the Levenberg-Marquardt step moves the current
solution in a similar direction as the Gauss-Newton step. The damp-
ing factor u therefore not only controls the step size but also the step
direction and is automatically adjusted in every iteration to optimally
adapt to the stage of the optimization (see [MNTo4, Niegg] on how to
initialize and adapt p).

29

2 Fundamentals

Levenberg-Marquardt versus Gauss-Newton. Even though
Levenberg-Marquardt is an extension of the Gauss-Newton algo-
rithm it is not in all cases the superior algorithm. As detailed in
Section 2.2.3 the decision of which Gauss-Newton variant to chose
should always be based on a good understanding and careful eval-
uation of the optimization problem. In our experience, the standard
Gauss-Newton algorithm performs generally very well on a broad
variety of non-linear least squares optimization problems, whereas
the Levenberg-Marquardt algorithm can have better convergence for
specific problem instances but is also more difficult to control. The
main difficulty of the Levenberg-Marquardt algorithm is that the step
control parameter y controls both the step size and the step direction
at the same time. This can be very hindering, especially if the initial
value of the variable vector x is far apart from the desired minimum.
The Levenberg-Marquardt algorithm will then mostly follow the steep-
est descent which can lead to convergence problems well known for
gradient descent methods. One cause of such convergence problems
is when the functions f; describe very local objectives but the final
solution requires a drastic global change of the variables. A specific
example is the smoothing of a surface: assume we wish to drastically
smooth a surface discretized by a triangular mesh. We implement the
smoothing by simultaneously minimizing functions f; describing the
smoothness of local surface patches consisting of the i-th vertex on the
mesh and its one-ring neighborhood of adjacent vertices. The gradient
descent will only minimize the f; in a very local manner, smoothing
out the high frequencies of the surface very quickly, but requiring
a lot of time for the lower frequencies to smooth out. The problem
is even more dramatic if a small change at one point on the surface
should propagate larger changes to the whole surface. Such situa-
tions are often encountered in constraint based surface modeling (see
Chapter 3). Additionally, in our experience the Levenberg-Marquardt
scheme is more sensitive to changes in the problem configuration,
since small changes in the adaption of y change the step direction and
size and can lead to rather different solutions. For these reasons and
experiences, we prefer to use the standard Gauss-Newton algorithm
for the optimization problems presented in this thesis.

30

2.2 Least Squares Optimization

2.2.3 Implementation Insights

We conclude this Chapter with a collection of insights and thoughts
on solving non-linear least squares problems collected in several years
of implementation and application experience.

1. Which XYZ should I use?
Which solver should I use? Which step size control mechanism
should I use? When implementing a solution to an optimization
problem one faces many design decisions. The basis of these de-
cisions should always be the underlying application. This means:
understand your user well and understand your problem well.

In applied research, providing tools that will serve a user in in-
dustry is often the driving goal. It is therefore invaluable to ob-
tain as much understanding on the user requirements as possible.
Should the solution allow interactive control and adjustment by
the user? Or is accuracy and quality of the result more important
than computation time? What means and level of control are de-
sired by the user? The answer to these questions can validate or
invalidate design decisions down to the smallest implementation
details.

An understanding of the problem is crucial for the more technical
decisions. The discussion on Gauss-Newton versus Levenberg-
Marquardt in Section 2.2.2 is a good example of how insights on
the details of the problem domain can help to determine high
level design questions like which solver should be used. Non-
linear least squares problems in digital geometry processing of-
ten have a complex objective function with ten or hundred thou-
sands of unknowns and constraints and with a complicated en-
ergy landscape. It is important to obtain as much understanding
about the objective function, its shape and its variables, as pos-
sible through testing, visualizations, and breaking the objective
down to its components. A deep understanding of the problem
helps both making the right design decisions and evaluating the
implementation (see Item 2).

31

2 Fundamentals

32

2. Never Stop Testing!

Non-linear least squares problems are often so complex that they
are very hard to evaluate. The iterative solvers will often con-
verge and might give reasonable solutions, even if the imple-
mentation of derivatives or other computations is incorrect. In
our experience we have learned the following guidelines: Un-
derstand your problem (see Item 1). Be suspicious if the results
are not as expected. Try to understand rather than speculate
why the results are not as expected. Take the time it needs to
carefully investigate the details that might cause the problem:s, it
will eventually pay off. Never blame the numerics too quickly,
the problems are much more likely to originate from mistakes in
implementation or design. If the problems are numerical prob-
lems you should be able to understand and reproduce exactly
where the numerical errors originate. As mentioned above, non-
linear least squares problems are often very complex. The ab-
solutely best tool to understand and evaluate the implementa-
tion is therefore the TEST. Testing should be done frequently and
in small blocks. Test every component. Testing five things si-
multaneously is tedious and error-prone. If the implementation
is extended by adding new code, gradually compare the results
with the old implementation whenever possible, since the older
implementation is often the only reference implementation you
have. Test your mathematical computations by comparing the
results with results from established mathematics software. The
computation of derivatives should always be tested by compar-
ing them to numerical derivatives obtained for example by finite
differences. To our experience it is extremely helpful to have a
general automated system to test derivatives that can be reused
by further non-linear least squares implementations. Testing will
not only help you find and prevent errors but also provide you
with a deeper understanding of the problem domain.

. Sparse Problems

If all the functions f; in Equation 2.23 only depend on a small sub-
set of the variables x;, the least squares problem is called sparse.
For the Gauss-Newton algorithm this implies that the linear sys-
tem to be solved in every iteration is sparse, because the i-th row

2.2 Least Squares Optimization

of the Jacobian matrix J only has a non-zero entry in the j-th
column, if the function f; depends on variable x;. The sparsity
structure of the normal equation matrix J'J is a bit more com-
plicated: the entry (i,j) is non-zero, if there exists at least one
function f; that depends on both variables x; and x;. In practice
J'] is usually denser than J but still sparse if J is sparse. In Chap-
ter 3 we present a detailed analysis of the sparsity structure of J
and J'J for a specific least squares problem instance.

The sparsity can be exploited by using a sparse linear sys-
tem solver, which brings the cubic (O(n®)) computation times
of dense linear system solvers down to linear time in prac-
tice. "In practice”" because the effective computing time depends
on the quality of the ordering of the matrix rows, the spar-
sity structure, and the matrix itself. Those are impossible to
predict. In practice, however, the solvers based on the sparse
Cholesky factorization achieve computation times linear in the
number of non-zero entries of the matrix describing the linear
system [GL81, BPK"08]. All least squares problems presented
in this thesis are sparse problems and we use the solvers PAR-
DISO [SGos] and CHOLMOD [CDHRog] which achieve similar
performance for our problems.

. QR-Decomposition

We have stated at the beginning of Section 2.2 that the QR-
decomposition provides more accurate solutions to the linear
least squares problem than the normal equations. Since the
Gauss-Newton algorithm solves a linear least squares problem
in every iteration, we could make use of this fact by solving the
linear system using the QR-Decomposition instead of the nor-
mal equations in each iteration. The QR-decomposition has com-
plexity O(mn?) and is usually slightly slower than solving the
normal equations. The difference becomes more significant if
the Jacobian matrix is very large and sparse, since sparse QR-
decompositions (even though very efficient implementations ex-
ist, e.g., SuiteSparseQR [Dav]) tend to be slower than the sparse
linear system solvers discussed in Item 3. In practice, the QR-
Decomposition is the preferred method for dense or small prob-

33

2 Fundamentals

34

lems, since it provides higher accuracy, and the normal equa-
tions are preferred for large sparse problems and if fast compu-
tation times are required. The least squares problems presented
in Chapters 3 and 4 of this thesis are large and sparse and for
all instances we tested the linear systems were well conditioned.
Thus the Gauss-Newton method using the normal equations as
described in Section 2.2.1 is applied for all problems in this thesis.

. Line Search

The Gauss-Newton algorithm outlined in Section 2.2.1 requires
an adaptive scheme to choose and control the step size a (Equa-
tion 2.33) in every iteration. We have found the following simple
but efficient scheme to be sufficient for the problems investigated
in this thesis. To choose &, in every iteration solve the normal
equations to obtain d* and then perform a), b), and c) in this
order:

a) a =1
b) while (F(x; +ad*) > F(x;)) doa = a/2
c) while (F(x; +ad*) > F(x; + (a/2)d*)) doa = a/2

This scheme is called a line search strategy, since it evaluates F
along the line described by point x; and direction d*. Step b) en-
sures convergence by only accepting an a that improves the cur-
rent solution. Step c) is based on the observation that the func-
tion F q+(0) = F(x; + ad*) locally often has a quadratic form.
It can therefore pay off to further decrease a until we reach a
minimum of F along the search line. If a gets too small during
the line search process, the variable vector x will only change in-
significantly and the Gauss-Newton algorithm has converged to
a minimum (see Item 8).

. Computing f and]

In many least squares problems, there are different logic blocks
of similar objectives f; that belong together. For example, there
might be a set of f; dedicated to guarantee the smoothness of a
surface, while another set of f; pulls the surface towards a set of
points that should be fitted. It has proven to be very convenient

2.2 Least Squares Optimization

to implement the Gauss-Newton solver in such a way, that blocks
of objectives can easily be added or removed from the problem
in a plugin-like system. For example, the fitting of points can
then easily be tested with different ways to ensure smoothness
by simply exchanging the blocks of smoothness objectives. Such
a block of objectives is responsible for filling one block of entries
in the vector f(x) and the corresponding derivatives as a block of
rows in the Jacobian J(x).

Often the computation of the derivatives requires values also
needed in the computation of the objectives. It therefore makes
sense to compute f; and the corresponding Jacobian row of
derivatives in the same routine. Depending on the line search
strategy and the speed of convergence, particularly on how of-
ten the function value F has to be queried during line search, the
computation of the objective vector f is typically needed much
more often than the the computation of the Jacobian J. It there-
fore usually makes sense to skip the derivative computation and
only compute f during line search.

. Computing Sparse J']

Building the normal equation matrix J'] is computationally ex-
pensive. If J is a dense m x n matrix, computing J'J in a straight
forward way has complexity O(mn?). If J is sparse, the complex-
ity not only depends on the dimensions m x n but also on the
number of non-zero entires. In the following, we denote by A;;
the entry in the i-th row and j-th column of matrix A and by A; .
and A, ; the i-th row and j-th colum vector of A. For a multipli-
cation of an / X m matrix A and an m X n matrix B it holds

m

(AB)i,j = Ai:B. ;= Z A; By (2:39)
k=1
An important observation for the multiplication of sparse ma-
trices is that the product can thus be written as a sum of outer
products:

AB =) A.B. (2.40)

k=1
This enables the following sparse matrix multiplication scheme:

m

35

2 Fundamentals

Basic Scheme
fork=1to m
for alliwith Ajx # 0
for all jwith By; # 0
ABZ',]' = ABl‘,j + Ai,kBk,j

The crucial advantage of this scheme is that the multiplications
are only performed with the non-zero entry pairs of A, and
Bi .. As a consequence, the number of multiplications and write
accesses to AB do only roughly linearly depend on the number
of non-zeros in the matrices (see below for a detailed analysis).

For the multiplication J'J this means

J'] = Z (]k,*)T Tk« (2.41)
k=1

that is, the sum goes over all rows Jj . of the Jacobian.

Let us consider two specific implementations of J'J following the
general scheme described above. One way to represent sparse
matrices is as a list of column vectors, where each entry in the
vector stores the row index and the value of a non-zero entry.
This representation can efficiently provide all non-zero entries
of a column of a sparce matrix. Efficient filling of the matrix,
however, requires the fill order to have monotonously increasing
row indices. This does not hold for the general scheme described
above. Therefore the scheme has to be adapted such that the
entries AB;; are filled with increasing i. An efficient way to do
this is to explicitly store both matrices J as well as J' in the sparse
format. Let us assume J is a m x n matrix. The multiplication
algorithm is then

Algorithm 1

fori=1to n
for all kwith Ji; #0
for all jwith (]T)].k # 0

(JTJ)i,j - (JTJ)i,j + (JT)j,k Vi

2.2 Least Squares Optimization

The symmetry of the matrix J'J leads to the advantage that Al-
gorithm 1 can be applied to sparse matrices stored as lists of
columns or as lists of rows. The symmetry of J'J can further
be exploited so that only half of the entries actually have to be
computed. Algorithm 1 requires

n

> X nz(00).) (2.42)

=1 (k] £0)

computations, where the function nz measures the number of
non-zeros in a vector. In practice, the non-zero entries are usually
evenly distributed over the number of rows and columns. As-
sume the non-zero values are perfectly distributed, that is, there
are NZ/m non-zero values in each row and NZ/n non-zero val-
ues in each column, where NZ is the total number of non-zero
values in J. In this case the number of computations required to
compute J'J by Algorithm 1 is

" NZNZ NZ?

; = (2.43)

which is essentially linear in NZ if the number of non-zero entries
per row is a small constant.

The major drawback of Algorithm 1 is that it requires explicitly
storing the transpose of the Jacobian J'. An alternative that does
not require this is:

Algorithm 2
fork=1to m
for alliwith Ji; #0
for all jwith Ji; #0
(JTJ)I',]' = (JTJ)I"]' + Jk,i]k,j

This algorithm simply computes the sum all possible pairs of
non-zero entries for every row vector J, and adds the result to
J'J. There are two issues that have to be addressed with this
algorithm: First, the two inner for loops require efficient access
to the non-zero entries of the Jacobian rows. Second, the order in

37

2 Fundamentals

which the entries of J'J are accessed is arbitrary. The first issue
could be resolved by storing the Jacobian by a list of rows in stead
of columns. The second issue can only be handled efficiently if
the sparse matrix J'J is stored using a hash table that guarantees
random access with amortized constant cost. For large matrices,
however, hash maps might be too memory consuming.

The option that has proven to be very efficient in practice is to
neither store J nor J' explicitly. Instead, only the current row of
the Jacobian is stored. This is possible for most problems, since
the derivatives for each function f; can usually be computed one
at a time, that is, the Jacobian can be computed row by row.
Once a row of the Jacobian is computed, all possible non-zero
entry pairs are multiplied and the result is added to the matrix
J'] as described by Algorithm 2. Since neither the Jacobian nor its
transpose have to be stored, this solution saves a lot of memory.
For maximum memory efficiency we still store the matrix J'J as
a simple list of column vectors.

The critical operation is the write access to J'J. Inserting a new
non-zero entry into a column vector costs time linear in the num-
ber of non-zero entries of the column. This does usually not
pose a problem in practice, especially if the number of non-zero
entries per column is a small constant. In most problems, the
sparsity structure of J'J, that is, where the non-zero entries are in
the matrix, does not change after the first iteration of the Gauss-
Newton algorithm. The access time to J'J can thus be further
reduced by keeping the sparsity structure fixed after the first it-
eration and performing a binary search on the column vector to
find the entry (i, j) leading to a logarithmic complexity.

Since the number of non-zero entries per column is usually small
and constant, this algorithm is almost as efficient as Algorithm 1
but needs much less memory. If we again assume the number of
non-zero entries per row and column of the Jacobian to be equal

2.2 Least Squares Optimization

for all rows and columns, Algorithm 2 with the sparse matrix
representations discussed above requires

3" (NZ) 10 (NZ2) ZNZ2 0 (NZY
2\ m e\ 7) T T 0\, -44
computations, which is again essentially linear in NZ, the num-

ber of non-zero entries of J, if the number of non-zero entries per
row and column is constant.

Another advantage of Algorithm 2 and the separate computation
of the Jacobian rows is that it nicely supports parallelism: Each
objective function f; and its derivatives can be computed and
added to J'J in parallel, independently of the other objectives
and derivatives.

. Stopping Criteria

The Gauss-Newton algorithm outlined in Section 2.2.1 is an it-
erative scheme to gradually improve the solution x. It is un-
likely that the algorithm exactly reaches a minimum of F. There-
fore the algorithm should be stopped, if either the objective
F(x) at the current solution, or the solution vector x itself only
change insignificantly within one iteration. There are various
possible stopping criteria for Gauss-Newton type algorithms
(see [MNTo4]). In our experience, the following stopping cri-
teria have proven to be a good choice: The algorithm has reached
convergence, if one of the following criteria are met

17(xi)" £(xi) [l < €v (14 F(x;)) (2.45)
|ad”| < ex (]xi| +€x) (2.46)
|F(xiti) — F(xi)| < erF(x;) (2.47)

where €y, €4, and €r are small tolerance thresholds. Criterion 2.45
is tested at the beginning of each iteration before solving the nor-
mal equations. If the maximum absolute value of the gradient
VF = J'f is too small, the objective function is too shallow and
the algorithm stops. Criterion 2.46 is tested during line search.
If the step size a and thus the induced variable change gets too
small, but condition b) in the line search scheme (see Item 5) is

39

2 Fundamentals

still not met, the algorithm stops. Criterion 2.47 is tested after the
line search has evaluated a new variable vector x;;. If no signifi-
cant improvement on the objective function F could be achieved,
the algorithm stops.

40

C HA P T ER

Constraint-Based Modeling

Positional, Metric, and Curvature Control for
Constraint-Based Surface Deformation

3.1 Introduction

Effective algorithms for surface deformation are of central importance
in digital geometry processing. One of the most popular interaction
metaphors allows the user to select subsets of the model as a control
handle and specify an affine transformation for each handle region.
The deformed surface is then computed such that the resulting posi-
tional constraints are satisfied, while preserving important properties
of the original shape.

While intuitive and easy-to-learn, certain tasks remain difficult to
achieve with handle-based interaction. For example, preserving or
explicitly modifying first or second order properties of the surface,
such as lengths, areas, or curvature, is cumbersome when deforming
a shape by specifying positional constraints only.

41

3 Constraint-Based Modeling

Area Constraint

Curvature Constraint

Length Constraint

-
KK
o7

S

e
s

e
%

-
<

RS
AR
il
Ly

R 11 | [T

[/

y
77
s
\!g

U

.

Figure 3.1 Basic constraint-based surface edits supported by our system.

To address this problem, we introduce a new framework for surface
processing using advanced surface constraints beyond the direct pre-
scription of positions. Our method allows the user to directly constrain
positions, lengths, areas, and curvatures (Figure 3.1). Target values for
these quantities can be specified anywhere on the model, both point-
wise or integrated over embedded curves and surface patches. Our
system solves for a deformation of the surface that best satisfies the
user constraints, while preserving the original shape of the model as
well as possible. We argue that the concept of shape preservation comes
in different flavors that strongly depend on the user’s editing intent.
To provide the necessary design flexibility, we enable explicit control
over the shearing (conformal distortion), stretching (area distortion)
and bending (curvature distortion) induced by the deformation map-
ping. We define the corresponding non-linear energies for each of
these properties, and show how a consistent discretization can be ob-
tained for surfaces represented by triangle meshes.

42

3.1 Introduction

3.1.1 Related Work

There exists a vast amount of literature on techniques to edit and
manipulate geometry and we refer to recent surveys such as [ASo6],
[BPK08], or [BSo8] for an overview. Positional constraints are used
successfully for shape manipulation with curves [WWg2, SFg8], mul-
tiresolution editing [ZS5597, KCVSg8, BKo4], and surface deforma-
tion based on differential coordinates [SCOL 04, LSCO 04, YZX 04,
LSLCOo5]. The latter achieve intuitive shape deformations by manip-
ulating derived properties such as mesh gradients or Laplacian coor-
dinates and reconstructing the deformed surface by solving a linear
system. Sketch-based tools have become popular due to an intuitive
shape design process centered around a sketching metaphor [IMTg9].
The work by Nealen et al. [NISAoy] allows the user to freely draw
and modify control curves on the model and reconstructs the surface
defined by these curve constraints using an optimization approach.

Various papers extended the idea of positional constraints to also sup-
port a more direct specification of derived properties. For example,
constraint based design tools (e.g. [MS92]) have successfully used dif-
ferential normal or curvature constraints at fixed points in space to cre-
ate a set of interpolating parameterized surface patches from scratch.
Miura and colleagues [MCWo1] allow the user to scale derivatives (i.e.
local lengths) of analytic curves and surfaces. Tosun and co-workers
propose a system for shape optimization using reflection lines that
allows modifying surfaces by specifying a target reflection function
gradient [TGRZo7]. This approach has been extended in [GZ08] to
support stroke-based editing of the shaded image to drive the defor-
mation of the surface.

Our work is also related to optimization methods in surface parameter-
ization [HLSo7]. Ben-Chen and colleagues [BCGBo8] and Springborn
et al. [SSPo8] have proposed algorithms for computing a conformal
mapping based on metric scaling and curvature prescription. While
conceptually similar in the sense that these methods 'deform’ the sur-
face into a plane while preserving conformality, the specific context of
surface parameterization warrants a fundamentally different approach
than our more general shape deformation setting.

43

3 Constraint-Based Modeling

Our general constraint-based surface processing framework enables
the manipulation of whole distributions of surface properties (e.g.
principal curvatures - see Section 3.6) leading to operations in the
broader context of surface optimization. Previous work in this context
are most commonly based on energy minimizing flows, where a given
surface is progressively evolved to decrease an energy functional that
quantifies the desired surface properties. Taubin [Taugsb] proposed
an iterative Laplacian scheme to implement surface diffusion for low-
pass filtering of discrete surfaces. Desbrun and colleagues [DMSBgg]
perform mean curvature flow to remove geometric noise on a surface
and propose an implicit scheme to stabilize the computation. Ohtake
and co-workers [OBSoz] apply diffusion to the mesh normals and re-
construct the smoothed surface using a fitting approach. Bobenko and
Schroder [BSos] introduced a version of discrete Willmore flow that
preserves important symmetries of the continuous setting. A variety of
different energy functionals, including Willmore and minimum varia-
tion of curvature energies, are studied by Pushkar and Sequin [PSo7] in
the context of fair surface design. Similarly, Pinkall and Polthier [PP93]
construct discrete minimal surfaces based on an area minimizing flow.

Various researchers have extended this class of shape optimization
methods by adding more direct control of the flow evolution. Hilde-
brandt and Polthier [HPPo4] present a method for feature-preserving
noise removal on surface meshes based on an anisotropic mean curva-
ture flow. Their method allows mean curvatures to be prescribed as
targets for the flow evolution. Eckstein and co-workers [EPT" 07] gen-
eralize geometric surface flows by tailoring the inner product of the
underlying vector field to the requirements of specific applications.
This extension provides a design tool for controlling the flow, which
has been successfully applied for surface fairing and deformable shape
matching.

44

3.2 Problem Formulation

3.2 Problem Formulation

We wish to broaden the toolset for surface deformation by enabling the
user to specify advanced constraints on the surface beyond the direct
prescription of positions. This involves three main challenges:

1. Modeling Constraints: What constraints provide effective, intu-
itive, and flexible tools for surface deformation?

2. Deformation Control: The constraints will not uniquely deter-
mine the deformation. There will be additional degrees of free-
dom. We wish to exploit this fact to give the user explicit control
on the deformation outcome.

3. Optimization Framework: a practical framework for constraint-
based surface deformation mandates an efficient implementation
that is able to simultaneously optimize for various, possibly con-
flicting, constraints requested by the user.

We address challenge 3 by formulating constraint-based surface de-
formation as a nonlinear least squares optimization problem: the user
input is converted into nonlinear least squares energies that are to be
minimized. This section proposes a set of modeling constraints (chal-
lenge 1) and adaptable measures that provide control on the defor-
mation outcome (challenge 2). For all these constraints and measures
we first derive the corresponding optimization energies for continu-
ous surfaces in general. Sections 3.3 and 3.4 discuss the discretization
of the proposed energies and how to simultaneously minimize these
energies to obtain the deformation result.

Notation. In the following, a prime denotes quantities of the un-
known deformed surface S’ we wish to find, a hat denotes target val-
ues, and plain symbols denote quantities of the original input sur-
face S.

45

3 Constraint-Based Modeling

3.2.1 Modeling Constraints

We propose three basic types of advanced shape editing constraints,
directly derived from the three most natural measures on a surface:
length, area, and curvature. The user can draw curves and surface
patches onto the surface and modify their global length and area, re-
spectively, or change the normal curvature of the surface along the
selected curves (see Figure 3.1). In addition, similar to existing handle-
based deformation tools, our system offers position constraints that
are computed from the displacement of a control handle.

The corresponding nonlinear least squares energies for these modeling
constraints are all of the same simple form:

—_— 2
Econstraint = (value’ —value) , (3.1)

where value either corresponds to the length of a curve, the area of a
surface patch, the normal curvature at a point along a curve, or the
position in space of a specific surface point. Minimizing the energy

Econstraint means trying to match the user-specified target value with
the value’ of the deformed surface as well as possible within the limits
of all the other, possibly conflicting, constraints.

3.2.2 Deformation Control

Imagine a simple constraint-based shape edit: decreasing the length of
a curve around a sphere. Figure 3.2 indicates that there are (infinitely)
many solutions achieving exactly the same target curve length. Which
one should be chosen? Given no additional information, the best one
can do is to preserve the properties from the original surface as well
as possible. A standard approach in surface modeling is to preserve
distances on the surface. Various surface modeling methods apply
such a deformation strategy, often referred to as "as-rigid-as-possible
deformation” (see [ASo6, BPK'08, BSo8] for an overview of existing
approaches). Although this deformation metaphor usually leads to
intuitive deformations, mainly because it mimics the physically correct
behavior of thin shells, we argue that it is not in all cases what the user

46

3.2 Problem Formulation

t

o
%
!

5
X
<

=

‘_\
T
A
s

P/

€
[
o

QL
=
W

Original Length Constraint

Figure 3.2 Reducing the curve length of the model on the left has infinitely
many solutions.

wants. It restricts the search space spanned by the underdetermined
problem of constraint-based surface deformation to a single solution.
For example: of all the solutions to decreasing the length of a curve
around a sphere as shown in Figure 3.2 only one would automatically
be chosen by the system.

We improve the modeling flexibility by providing the user explicit con-
trol on which properties of the original surface should be preserved to
what extent. It is a classical result from differential geometry that a sur-
face is defined by its metric and curvature properties (see Section 2.1).
From parameterization theory we know that metric distortion can be
divided into areal and angular (conformal) distortion [Horo1]. In our
framework we therefore implement deformation control with metric
and curvature energies that can be weighted to specify the relative
importance of area, angle, and curvature preservation.

Metric Energies. Let], be the Jacobian of the deformation function
S — &' restricted to the tangent space at a point p on the original
surface S . The metric distortion can be measured through the local
anisotropic scaling that is encoded in the singular values 01,0, of |,
(see Section 2.1). The product ¢j0,> quantifies the change in area and
the ratio 01/0, measures the angular (conformal) distortion. We use
the symmetric energies

1

Earealp = 0102 + E (32)
o 02
Econfp - ;2 + ;1 (33)

47

3 Constraint-Based Modeling

to measure the areal and conformal distortion, respectively. Integrat-
ing these local measures over the whole surface leads to the total metric
energies:

1

Eareulg - A_S/SEarealp dA (34)
1

Econfg = A_S/SEconfp dA (35)

Dividing by the total surface area As ensures independence of the re-
sult from global scaling. As we will illustrate below, a weighted sum of
these two energies provides flexible control on the deformation seman-
tics. If both E,.,; and E,, s are weighted equally, their sum corresponds
to an isometric distortion measure.

Curvature Energy. = We denote with x; the signed maximum and
with x, the signed minimum curvature at a point p € S (see Sec-
tion 2.1.5)). Quantities of the unknown surface S’ are defined analo-
gously and denoted by a prime. We define an energy that quantifies
curvature preservation by measuring the deviation of principal cur-
vatures «x}, k;, of the deformed surface S’ from the curvatures on the
original surface as

Epes = /S(Ki —K1)% + (k3 — 12)* dA. (3.6)

Combined Surface Energy. The total surface energy is computed
as a weighted combination of the metric and curvature energies

Esurfg — kareaZEarealg + kconfEconfS =+ kchpcs (37)

with scalar weights kusear, keonf, and kyc. The effect of different choices
for these weights is illustrated in Figure 3.3. A dominant conformal
weight leads to a uniform scaling of the sphere. A dominant areal
term yields a constricting deformation with fairly strong distortion of
angles and curvature, while a dominant curvature term leads to the
curve ‘sliding” along the sphere. By varying the three weights the user
is able to achieve any of the possible deformations shown in Figure 3.2
and all the stages in between. This simple example illustrates how our
approach supports different notions of shape preservation. The user can

48

3.3 Discretization

)

W\
0’;:

gee’

7

2
(X
X

i !

N/

I

i-d-
AR
lig

it
oy

TN

)
T

i
+H
|y

[T
1
-

Iﬁ..—
/7]
N

N
o

%
q

7
L

)\.

Original Curvature preserving Conformal Equiareal
(1,0% 100) (100, 0%, 0%) (1,100,.001)

Figure 3.3 Effect of different weights for the local surface energies. As
a modeling constraint, the target length of the red curve is set to one third
of its original value. The numbers in brackets denote the weighting terms
(Kconfs Kareat, kpc), where 0 denotes a very small contribution (we use 0* =
107°) of the corresponding energy added for regularization.

adapt the behavior of the optimization to preserve properties of the
original shape that are important in the specific application context,
enabling flexible surface processing and shape design.

Surface Energies as Modeling Constraints. Besides shape preser-
vation, these surface energies also provide direct control for shape de-
formation. For example, we can locally scale the metric to grow or
shrink the shape, or control surface bending by prescribing principal
curvatures. The latter can lead to particularly interesting surface pro-
cessing operations when applying filters to modify the whole distri-
bution of principal curvatures on the surface. This special application
leads to the concept of Curvature-Domain Shape Processing and is
presented in Section 3.6.

3.3 Discretization

To enable an efficient implementation, we derive the discrete ener-
gies from their continuous counterparts presented in Section 3.2. The
surface S is discretized with a triangle mesh M = (V,&,F), where
V = {v;} denotes the set of vertices, £ = {e;;} the edge set, and
F = {fix} the face set with 1 < i,j,k < |V|. The position of ver-

49

3 Constraint-Based Modeling

Figure 3.4 Vertex and face areas, inner triangle angle (left). Length and
center point of a discrete path segment (right).

tex v; is given by v; € IR®. As before, a prime denotes quantities of the
deformed mesh, a hat specifies target values, all other values are com-
puted on the input surface. While our method uses triangle meshes
as a discrete representation of smooth surfaces, the basic concepts are
independent of this choice of discretization.

3.3.1 Surface Energies

Metric Energies. In the discrete setting both energies Egeqr, (3.2)
and E,,, fo (3.3) are constant for all points on each triangle f and can
be written as [Horo1]

E A A (38)
real; — 3
arealy Af/ Af

_ cot(a;) ||e;'k||2 + cot(a;)||ej[|* + cot(a) He;j”2
Econff - ZAf/ ' (39)

where A; denotes the area of triangle f = fii, a;, &;, and &y are the
inner angles of f at the corresponding vertices, and e;; = v; — v; is the
edge vector between the corresponding vertices (Figure 3.4). Summing
the per-triangle energies over the entire mesh M with surface area A
leads to the total areal energy

1
EarealM - m f;}— AfEarealf/ (3'10)

50

3.3 Discretization

and, analogously, the total conformal energy E.y,,. Energies simi-
lar to Eg., have been used for surface parameterization and physi-
cally based shell models [DMKo3, GHDSo03]. The conformal energy
Econs corresponds to the MIPS energy introduced by Hormann in the
context of mesh parameterization [Horo1, HGoo]. To the best of our
knowledge, this energy has never been used for surface deformation,
partly because the corresponding optimization is rather involved. We
resolve this issue by introducing a novel formulation of the energy in
Section 3.4.

An alternative, slightly more efficient formulation of a conformal en-
ergy is based on inner triangle angles «; (Figure 3.4):

Econf, = (@i — ;) + (a0 — a))” + (o —). (3.11)

A distinct advantage of E.,s as defined in Equation 3.9 is il-
lustrated in the figure below. Compared to the conformal en-
ergy of Equation 3.11 the one of Equation 3.9 is not sensi-
tive to the specific discretization of the mesh. @ When stretch-
ing the non-uniformly tessellated patch along the horizontal axis,
the local distortion is independent of the triangulation, which
makes the method robust under re-sampling of the surface.

Original Conformal energy of Eq. 3.71 Conformal energy of Eq. 3.9

Curvature Energy. We discretize the integral of Equation 3.6 as a
sum of discrete curvatures:

Epep = Y Ao, [(k1; — 11,0)* 4 (x5, — %2,0)%] (3.12)

v; eV

where x;; and x; denote the signed maximal and minimal principal
curvatures at vertex v;.

51

3 Constraint-Based Modeling

A variety of techniques have been proposed to estimate curvatures
on piece-wise linear surfaces (cf., [MDSBo2, CSMo3, CPos, GGRZo06,
KSNSo7]). In our implementation, we use the curvature tensor pro-
posed by Cohen-Steiner and Morvan [CSMo3] as it provides a robust
and theoretically well-founded estimation of the principal curvatures
at multiple scales, which we exploit in our framework for Curvature-
Domain Shape Processing (Section 3.6) to implement multi-scale pro-
cessing operations. However, our method is not dependent on this
specific curvature discretization and other techniques could be used
instead.

We adopt the notation used by Alliez and colleagues [ACSD " 03] and
summarize the curvature computation here. The curvature tensor
K(v) for vertex v is found by averaging an edge-based tensor for all
edges e that fall within a region B surrounding the vertex. The curva-
ture tensor is represented by the 3 x 3 matrix

K(o) = ‘%‘ Y Ble) len Bl ee’, (3.13)

eeB

where |B]| is the surface area of the region B, B(e) represents the signed
angle between the normals of the triangles incident to edge e and is
positive for a convex crease and negative for a concave one, |e N B| is
the length of the portion of the edge within the region B, and @ is a
unit-length vector aligned with edge vector e. The principal curvatures
are found by computing the eigenvalues of the curvature tensor C(v).
The eigenvalue closest to zero is discarded, and the remaining two
form the sighed maximum and minimum curvatures: the larger signed
eigenvalue is x; and the smaller x,. The size of B determines the scale
of the curvature estimation. As the smallest scale we use the barycen-
tric area A,, of a vertex v; [MDSBoz2] (Figure 3.4). We use barycentric
areas rather than generalized Voronoi regions to simplify derivative
computations. For larger scales, we compute the union of the barycen-
tric areas of all vertices within a certain distance to v;. For all modeling
operations where the curvature energy represents a shape preservation
energy (i.e. all operations except Curvature-Domain Shape Processing
discussed in Section 3.6) we use the smallest scale for B.

52

3.3 Discretization

Combined Surface Energy. As in the continuous case, the total
surface energy on a mesh is computed as a weighted combination of
the metric and curvature energies

EsurfM = karealEarealM + kconfEconfM + kchpcM (314)

with scalar weights kurea, kconf, and ke The effect of different choices
for these weights is discussed in Section 3.2.2.

3.3.2 Modeling Constraints

The surface energies defined above aim at preserving important prop-
erties of the input surface, i.e., control how the shape resists to change
dictated by the user’s modeling constraints. However, as indicated in
Section 3.2.2, the energies can also be used to drive the deformation
by replacing the values of the original shape by arbitrary target values.
One of the unique features of our method is the ability to explicitly
control the surface metric, i.e., set constraints for lengths and areas
on the surface. This can be done locally by specifying target values
for each triangle in Equations 3.8 and 3.9, or as global least-squares
constraints over curves and surface patches, as described below. All
energies below follow the general form stated in Section 3.2.1 (as al-
ways, user-specified target values are indicated by a hat symbol).

Area Constraints. A global area constraint for a patch P C S,
represented by a set of faces Fp C F, is defined as

1 n
Eareap - A_% (AP/ - AP)ZI (315)

i.e., the total area Ap: of the patch P on the deformed surface should
be equal to the specified target value Ap provided by the user. In
contrast to local area constraints, scaling the global area offers more
degrees of freedom to satisfy conflicting user constraints, as illustrated
in Figure 3.5.

Length Constraints. Another integrated measure is the length of
a curve (Figure 3.3), discretized as a piecewise linear path D C M
(Figure 3.4). The corresponding energy is defined as

53

3 Constraint-Based Modeling

Original Local area constraint Global area constraint

Figure 3.5 Comparison of local vs. global area constraints. The area of
the blue patch is scaled by a factor of 2.5 while constraining the length of
the red curve to remain constant. Specifying the area change locally for each
triangle does not offer enough degrees of freedom to satisfy both constraints.
The global area constraint for the entire patch offers more flexibility to satisfy
the constraints.

Original Set to zero

Figure 3.6 Deformation of a sphere by prescribing normal curvature of the
surface along the marked curve.

1 R 2
Elengthp — g (lD’ - lD) ’ (316)

where [p denotes the total length of the polyline.

Normal Curvature Constraints. Using the curvature energy of
Equation 3.12, the user can directly modify principal curvatures (see
Section 3.6). Access to principal curvatures, however, does not provide
directional control of surface bending. We therefore additionally allow
prescribing the normal curvature of the surface (see Section 2.1) along
arbitrary tangent directions. In order to do so, the user can freely draw

54

3.3 Discretization

Figure 3.7 Left: Discrete path segment with center point q;, interpolated
mesh normals n and projections n* onto the osculating plane. Grey elements
do not lie in the plane. Right: Approximation of the normal curvature.

curves on the surface and specify the desired target values for normal
curvature (Figure 3.6).

We measure signed normal curvature as the change of surface normal
along the curve. Continuous surface normal vectors are defined using
barycentric interpolation of vertex normals. At a given point q; on the
curve we compute the osculating plane spanned by the surface normal
vector n; at q; and the curve’s tangent vector. For a discrete approx-
imation of normal curvature xp we consider a small curve segment i
of length [, around q; (Figure 3.4) and project the interpolated nor-
mal vectors at the ends of the curve segment onto the osculating plane
(Figure 3.7), leading to
2sin(Bi/2)

Kp,;i = l—' (3-17)
qi

where B; is the angle between the projected surface normals n;,, n},.

The normal curvature energy is then defined as

Encp = VAM Y g, (kprj — kD), (3-18)
i

Position Constraints. Our system also offers position constraints
based on the standard handle paradigm. Since the vertex positions are
the unknowns of the optimization, fixing vertices to a specified posi-
tion in space is trivial. The affected vertices are displaced to the target

55

3 Constraint-Based Modeling

;\}\
-\
-
LTS \ LTy
\ \\\ \\ \/\
Original Deformed

Figure 3.8 Our system incorporates the handle-based deformation
metaphor using position constraints (marked in blue). Local detail is accu-
rately preserved due to the non-linear surface energies.

location and the corresponding variables are removed from the opti-
mization. To provide more flexibility when accommodating conflicting
constraints we also include soft constraints, formulated using the least
squares energy

Epesss = 57 1 Ao IV, =91l (5.19)
M v;eV

where A, is the barycentric area around vertex v; (Figure 3.4). Since all
of the above energies except E,,; are invariant to rigid transformations,
for all the examples shown we either fixed a number of vertices to their
original position or added soft position constraints to all vertices using
a small weight k,,; = 0.001. Figure 3.8 shows a test case for position
constraints that illustrates how our non-linear surface energies lead
to intuitive detail preservation, i.e., accurate rotation of surface detail

even for purely translation-based handle displacements (cf. Figure 2
of [BPGKo6]).

3.3.3 Discussion
An important feature of our approach is the systematic definition of
all shape preservation and constraint energies based on the following

three requirements: (i) Convergence: the discrete energies should con-
verge to the continuous ones for a suitable refinement of the mesh,

56

3.4 Optimization

(ii) Local symmetry: energies should be locally invariant when inter-
changing deformed and original surface, (iii) Scale invariance: ener-
gies should be invariant under global re-scaling. The last property
is achieved using global normalization terms, while local symmetry
follows immediately from the definition of the energy terms. Cohen-
Steiner and Morvan have proved convergence for their estimation of
principal curvatures [CSMo3] that we apply to evaluate Equation 3.12.
The area of a set of triangles naturally converges to the area of the
corresponding patch if a smooth parameterized surface is sampled
regularly with increasing density to generate a mesh. The same ar-
gument holds for the derived metric energies since they are constant
for a triangle face and converge to the functions evaluated at a point
of the smooth surface, if the three vertices converge to that point. Sim-
ilarly, convergence for the measures of normal curvature and length of
a curve is assured if the sampling density of the curve increases.

3.4 Optimization

Editing constraints and shape preservation control are encoded in the
energies introduced in the previous section. We find the corresponding
deformed surface by solving for the vertex positions vj ... v; such that

V] ...V, = argmin ZkiEi, (3.20)

/ /
Vi-Vi i

where E; and k; is short-hand notation for the different energies and
weighting constants defined in Section 3.3. We solve this nonlinear
least squares problem using a Gauss-Newton solver which enables su-
perlinear convergence without the need for second derivatives. See
Section 2.2 for an extensive discussion on nonlinear least squares prob-
lems. The initial values of the variables are the vertex positions of the
input surface. In all our experiments the results converge within about
fifteen iteration steps.

Since the energies each only depend on a subset of the vertices the
linear system to be solved in a Gauss-Newton iteration is sparse (see
Section 2.2.3 for details). Figure 3.9 shows the sparsity structure of

57

3 Constraint-Based Modeling

8 . ——— _.‘;“:,*W-M-V\—\-\:;;_}.xs_»u u;‘mv:-:-.-;_ :L\...':‘:.?‘ :~;:~:.t~_:~;«:;..:. T —|— l —
% \:“-““.‘w"\-'ﬂ" S el R T N T v e 5% =Dttt:-ur J
0 - B i
- AN
——— N\)
T
Epc Elength Esurf Epos J J

Figure 3.9 Left: Sparsity structure of the Jacobian matrix J' (transposed
for convenience) showing which rows of J correspond to which energy terms
for the optimization problem shown in Figure 3.3. Right: Sparsity structure
of the corresponding normal equations system J'J.

the Jacobian matrix J and the normal equations matrix J'J for a spe-
cific problem instance, namely the manipulation of curve length on
the sphere shown in Figure 3.3. If the curve covers a big percentage of
the surface, the path length energy depends on many of the vertices
and the density of the matrix J'J increases. One completely dense (all
values non-zero) row in the Jacobian matrix is enough to render J']J
completely dense. Since a path usually only covers a small part of the
surface, the matrices are still sufficiently sparse. For large area con-
straints, however, it can happen that the matrices become rather dense
and thus require a lot of memory (see Section 3.7 for a discussion).

The derivation of analytic expressions for the gradients of the ener-
gies is discussed in Appendix A.1. If curvatures are manipulated
(Section 3.6), the optimization falls into the category of composite
non-smooth optimization [WF86] due to discontinuities in the deriva-
tives of the principal curvatures at umbilic points. As detailed in
Appendix A.1, we are able to derive suitable approximations for
the derivatives at these points so that efficient methods designed for
smooth functions can be applied.

Usually, there exists a conflict between the modified properties (for ex-
ample the length of a path) and the properties that should preserve
their values (for example metric properties). For some applications the
user might want to achieve the modified properties as exactly as pos-
sible. To support this, the optimization procedure can be adapted to
allow the preservation energies to evolve in an iterative fashion: the op-
timization problem (3.20) is solved repetitively until convergence, each
time reinitializing the property preservation energies while keeping

58

3.4 Optimization

Figure 3.10 Virtual subdivision of a triangle f avoids negative cotangent
weights, since all angles are < 71/2.

the original energies for the manipulated properties. We only make
use of this possibility for Curvature-Domain Shape Processing (Sec-
tion 3.6).

Conformal Energy. In our experiments we found that the conver-
gence of the optimization is largely dominated by the conformal en-
ergy Econs. In fact, a direct implementation of Equation 3.9 leads to
prohibitively slow convergence. Since the rather involved formulas
for the curvature energies make the use of an advanced solver that
requires second derivatives undesirable, we make use of the follow-
ing observation to obtain a practical implementation: As written in
Equation 3.9, E¢y5 is the sum of three rational quadratic terms. Since
the Gauss-Newton solver locally approximates the objective function
with a quadratic and the convergence critically depends on the cur-
vature of the terms in the objective vector (see Section 2.2), splitting
the energy into three separate terms significantly improves the conver-
gence. However, this separation is only admissible, if the single terms
(i.e. the cotangent weights) are all positive as required by the Gauss-
Newton Solver. To address this issue, we propose a re-formulation for
the conformal energy based on a virtual subdivision of a triangle us-
ing its incircle center to generate six smaller triangles as depicted in
Figure 3.10. By construction, negative cotangent weights cannot occur,
hence we can perform the above split into separate terms. By exploit-
ing symmetry, right angles, and invariance of the conformal energy

59

3 Constraint-Based Modeling

under triangle subdivision, the resulting formula simplifies to a sum
of six positive rational quadratics for each triangle:

S VI 2
confy 3Hef,u||2 Af/ 12Af Af’ ’ 3

u=1

where ¢ denotes the circumference of the triangle, hy, are the vectors
connecting points on the edges and the center of the incircle on the tri-
angle of the original mesh (Figure 3.10). On the deformed mesh, these
points are expressed with the barycentric coordinates of the points
on the original mesh. The barycentric coordinates are computed as a
preprocessing step at the beginning of the optimization. This reformu-
lation is essential to achieve a practical speed of convergence with a
Gauss-Newton type solver, as we demonstrate with a simple example:
Scaling the normal curvature of the sphere along the curve depicted
in Figure 3.6 takes 9 iteration steps using the virtual subdivision com-
pared to 108 iterations without it. Since the terms of the conformal
energy are better approximated by quadratic functions when using
the subdivision, the stepsize has only to be scaled by an average factor
of 0.43 compared to 0.00027 in the unsubdivided formulation. This re-
duces the cost of stepsize control in our implementation. For this sim-
ple test case, the overall speedup factor achieved by virtual subdivision
was 47. For more complex operations, these performance differences
become even more extreme which renders the unsubdivided energy
impractical for use with a Gauss-Newton type optimization. Note that
the straightforward way of subdivision by dividing the obtuse angle
with a line orthogonal to the opposite edge is not suitable since the
virtual triangles can become arbitrarily thin leading to numerical in-
stabilities.

3.5 Constraint-Based Shape Editing

Figures 3.3 to 3.8 illustrate specific properties of our framework for
simple geometric shapes. In the following we show various con-
strained deformations performed on more complex models focusing

60

3.5 Constraint-Based Shape Editing

Isometric Original Conformal

Figure 3.11 The vase has been edited by reducing the length of the marked
curve by a factor of two while keeping the bottom fixed. Different notions of
shape preservation lead to different editing semantics.

on editing operations that are difficult to achieve with traditional,
purely position-based approaches.

Figure 3.11 shows an editing operation using length constraints. The
user draws a curve along the rim of the vase and interactively mod-
ifies the desired target length while the bottom of the vase is kept
fixed. Two settings for the surface energies, one aiming at isometric,
the other at conformal deformation, illustrate how different notions of
shape preservation lead to different editing semantics. A benefit of our
approach is that the user has explicit control of the shape-preserving
energies and can thus easily adapt the deformation to a specific appli-
cation context.

Figure 3.12 shows the creation of a cartoon horse. The belly and flanks
have been enhanced by scaling the area of the blue patches. Length
constraints are used to constrict the waist and enlarge the head. The
normal curvature for each point of the curve along the spine has been
set to the curve average, leading to a deformation that pushes the spine
towards a circular arc.

61

3 Constraint-Based Modeling

Original t Edited

M)

Area Prescription Length Prescription

Original

Normal Curvature
Prescription

N

Edited

Figure 3.12 The shape of the horse model has been edited by direct manip-
ulation of length, normal curvature, and area of different curves and surface
patches.

62

3.5 Constraint-Based Shape Editing

Original Original

Scaled lengths Scaled area

Scaled lengths + Increased curvature
fixed curvature

Figure 3.13 Processing the fandisk model. Length, normal curvature, and
area of the marked curves and patch have been scaled by a factor of two in
the corresponding images. For the bottom left image, the curvature of the
curves has additionally been constrained to remain zero for each of the marked

segments.

3 Constraint-Based Modeling

Figure 3.13 shows various editing operations on the fandisk model.
Direct control of metric and curvature is particularly useful in a CAD
context, where the semantics of the model are often directly linked to
lengths, areas, and curvature. In the special case of fixing the curva-
ture along a curve to zero, it might be more desirable to constrain the
curvature of the curve itself instead of the normal curvature of the sur-
face, which significantly simplifies computation. This technique was
used to generate the bottom left result of Figure 3.13.

Image Deformation. Our general constraint-based modeling frame-
work is not restricted to surface deformation and can also be used to
edit images: The image domain is triangulated by a 2-dimensional tri-
angle mesh and the energies introduced above can be directly applied
to specify advanced constraints for image deformation. Figures 3.14
and 3.15 demonstrate how curvature constraints for curves drawn on
the image can be used to intuitively correct distorted images similar
to [CAAog] without any prior information on how the image was dis-
torted. The prescription of area (Figure 3.16) and length (Figure 3.17)
provides novel tools for image manipulation. As for surface defor-
mation, the metric shape preservation energies can be used to control
how local angles and areas are preserved (obviously, the principal cur-
vature energy is not needed in this 2D setting). Figure 3.17 investi-
gates the potential of adaptive weights for shape preservation, where
the user can specify important regions that should be preserved as
well as possible. This is implemented by using separate optimization
weights kyeq and ke, for every mesh vertex instead of two global val-
ues. Figure 3.18 indicates that not only the principal curvature energy
(see Section 3.6) but also the metric preservation energies can serve
as constraints by prescribing angles and local areas for every triangle,
which offers potential for future work.

3.5 Constraint-Based Shape Editing

Path Curvature Constraints

Figure 3.14 Correct "fisheye” lens distortion by prescribing zero path cur-
vature. The user specified paths are shown in the top row. (Original image
taken from [CAAo9] and kindly provided by Aseem Agarwala.)

-

Original Path Curvature Constraints + Position Constraints

Figure 3.15 Correct "fisheye” lens distortion by combining path curvature
and position constraints. (Original image taken from [CAAo09] and kindly
provided by Aseem Agarwala.)

65

3 Constraint-Based Modeling

Original Area Constraints

Figure 3.16 Area constraints for interactive image deformation.

Original Decrease Length Increase Length

Figure 3.17 Length constraints for interactive image deformation. The
user can draw adaptive weights (shown by the dark-red to yellow color scheme
on the left) to specify salient regions (light red and yellow) that should be
distorted less by the deformation.

Original Metric Constraints

Figure 3.18 Prescription of metric properties on a 2-dimensional mesh.
For each triangle the angles are constrained to be 60°, while the area should
be preserved, leading to a more uniform triangle mesh.

66

3.6 Curvature-Domain Shape Processing

3.6 Curvature-Domain Shape Processing

Curvature is an essential concept in geometry and plays a crucial role
in surface optimization, geometric modeling, and shape classification.
Many geometry processing operations strive to optimize the curva-
ture distribution of a surface based on energy functionals that mea-
sure surface fairness [BPK " 08]. Shape classification, feature extraction,
and segmentation algorithms [Shao6, AKM " 06] heavily rely on curva-
ture information to identify meaningful geometric structures, such as
ridges, valleys, and corners, that are mapped to features or used as
segmentation boundaries. Similarly, non-photorealistic rendering ap-
proaches often make use of surface curvature to determine the position
and style of rendered strokes [MHILoz]. Typically, these methods use
curvature either as a tool for analysis, or indirectly in the optimiza-
tion of fairness energies that are defined as curvature integrals over
the entire surface.

Our constraint-based surface deformation framework provides direct
access to curvature as a geometry processing tool. Instead of editing
a shape through modeling constraints defined on curves and surface
patches, as demonstrated in Section 3.5, we now investigate the po-
tential of editing and filtering the distribution of principal curvatures
over the whole surface in order to alter the shape of an object. The
conceptual work-flow of this Curvature-Domain Shape Processing is
illustrated in Figure 3.19. Our system first computes a mapping from
the spatial domain to the curvature domain by evaluating principal
curvatures for each point on the surface of a given object. In this do-
main, important geometric features and properties are more directly
accessible and can be manipulated by setting specific curvatures to de-
sired target values or by applying filtering operations on the curvature
distribution. The mapping to the curvature domain is then inverted
to reconstruct the modified object geometry using our optimization
framework that computes a deformation of the input surface that best
approximates the prescribed curvature constraints in a least-squares
sense. As shown in Figure 3.20 and on further results shown below,
this approach facilitates a variety of geometry processing operations

3 Constraint-Based Modeling

—»
Curvature
estimation

Editing,
filtering

-
Optimization

Reconstructed model Target curvatures

Figure 3.19 The central idea of Curvature-Domain Shape Processing is to
process the geometry of a model by altering its curvature distribution.

Original
y | >0
=0 Ko

A <0
<0=0>0

K1

K1, Ko K1, %5 K12 — 1.5

Figure 3.20 Geometry processing in the curvature domain. The models on
the right (blue regions indicate constrained vertices) have been reconstructed
by modifying the signed maximum and minimum curvatures, x; and Ky, re-
spectively, of the model shown in the upper left. For example, setting the min-
imum curvature ky to zero while keeping x; fixed straightens out the curved
regions, as shown in the top right. In the bottom right, the curvatures of a
smaller scale are set to the curvatures estimated at a larger scale, as visualized
in the curvature plots in the bottom left.

68

3.6 Curvature-Domain Shape Processing

that are difficult to achieve by manipulating spatial 3D coordinates but
trivial to formulate in the curvature domain.

Implementation. Following the pipeline depicted in Figure 3.19,
we first compute discrete principal curvatures on the input mesh as
described in Section 3.3.1. These curvature values can then be mod-
ified by the user by applying filtering operations or direct edits, and
the resulting surface is reconstructed using our constraint based opti-
mization framework. For Curvature-Domain Shape Processing, only a
subset of the optimization energies described in Sections 3.2 and 3.3
are required: The user constraints are enforced by the principal curva-
ture energy of Equation 3.12, where the curvature values «; ;, x5 ; of the
original surface are replaced by the user specified target curvatures
k1, %2, As with the modeling constraints discussed in the previous
section, the resulting surface is not uniquely specified by the principal
curvature constraints alone. Therefore we additionally preserve the
metric properties of the original surface as well as possible.

The three surface energies (curvature and metric) are combined as de-
scribed in Section 3.3 and can be weighted to control the deformation
behavior. Our experiments have shown that for Curvature-Domain
Shape Processing a dominant conformal energy usually gives the best
deformation flexibility to achieve the prescribed principal curvatures.
We therefore use a very small optimization weight k., for all our
examples below. Since the surface energies are invariant under rigid
transformations, either a number of vertices have to be fixed to their
original position or soft position constraints have to be added to all
vertices using a small weight, as described in Section 3.3.

For some applications, there may be a conflict between the desired cur-
vatures and the original shape metric, since the requested curvatures
necessitate a deviation in triangle shape. For this reason we apply
the optional adaption of the optimization procedure, as proposed in
Section 3.4, to allow the metric to evolve in an iterative fashion.

Results. Figure 3.21 shows a number of curvature-domain edits
on a shape with a complex curvature distribution. For cross-scale
smoothing, we set the target principal curvatures of the smallest scale
(barycentric vertex area) to the values computed at a scale of four times

69

3 Constraint-Based Modeling

Target curvatures Final curvatures

\Reconstruct / Estimate

Original model Cross-scale smoothing

W
¥ RS

.

Curvature clamping Feature enhancement

Figure 3.21 Curvature-domain processing on the Stanford bunny. The
top row shows the curvature plots of the original model, the prescribed target
values, and the actual achieved curvatures on the final reconstructed model.
Vertices on the base of the bunny are constrained to remain fixed in place in
the optimization.

70

3.6 Curvature-Domain Shape Processing

the average one-ring radius. As the curvature plots indicate, the tar-
get curvature values are well approximated in the final model. The
curvature plots visualize both principal curvatures according to the
colormap in Figure 3.20. Note that the resulting smoothing avoids lo-
cal shrinkage artifacts often observed with diffusion-based approaches
that can increase mean curvature and eventually lead to pinch-off sin-
gularities.

Curvature clamping restricts both the minimum and maximum curva-
ture to lie within a user-defined interval, thus removing the extreme
curvatures from the surface. As a result, the bunny’s ears inflate in
order to avoid high curvatures. Note how surface detail that is charac-
terized by curvatures within the clamping interval is preserved, while
strong creases are smoothed and rounded.

Figure 3.23 shows one-sided curvature clamping on a machine part,
where curvatures are restricted to lie in the interval [—5,00]. As a
result, concave corners evolve into smooth fillets to meet the new cur-
vature requirements. Note that normal discontinuities across feature
edges are introduced purely for rendering purposes. Curvature pro-
cessing is oblivious to these tagged edges, i.e. the entire mesh is con-
sidered a discrete approximation of a smooth surface.

Feature enhancement in Figure 3.21 is achieved by increasing the
largest absolute principal curvature by an amount proportional to the
difference of the absolute principal curvature values. This change en-
hances convex ridges as well as concave valleys. The same enhance-
ment filter is applied in Figure 3.22 (c) on a digital elevation model.
This figure also shows the effect of multi-scale editing (b), where target
curvatures have been specified on two different scales: the curvatures
of the original model are prescribed on the smallest scale, while on a
coarser scale target curvatures are set to a constant in a circular region
around the peak of the mountain. This “flattens out” the mountain
flanks, while preserving the fine-scale structure. Multi-scale editing
is easily incorporated into the optimization by including target curva-
tures at different scales in the energy E.. Image (d) shows the result
of a single-scale edit, where both principal curvatures for the center
region have been set to the same constant, thus pushing the shape
towards a spherical configuration.

71

3 Constraint-Based Modeling

small scale

large scale

(d) To sphere

Figure 3.22 Different curvature-domain processing operations on the Mat-
terhorn. Curvature plots show the resulting curvatures after the optimization.
For (b) curvature optimization is performed at two scales.

72

3.6 Curvature-Domain Shape Processing

5.1

5.1

Original Curvature clamping

Figure 3.23 Curvature clamping of a machine part. The histograms show
the distribution of x on a logarithmic scale before and after the optimization.

Figure 3.24 shows a curvature-domain bilateral filter applied to a noisy
range scan. Target curvature values %, for vertex v; (and analogously
for %, ;) are computed as local weighted averages that combine domain
and range filtering

e Pelllvi = vilDs(lrrs — s

kl,i — s (3'22)
Yoen; Pe(llvi = vil)ps([rri — xe1,4])

where N; is the local averaging region around vertex v;, and ¢, and
¢s are two Gaussians measuring spatial closeness and curvature sim-
ilarity, respectively (see [TM9g8] for details). Compared to isotropic
Laplacian smoothing, the bilateral filter better preserves ridges and
corners, while leading to an overall smoother curvature distribution.
The curvature plots reveal the anisotropic behavior of the filter, i.e.,

73

3 Constraint-Based Modeling

Laplacian smoothing Bilateral curvature filter

Laplacian smoothing Bilateral curvature filter

Figure 3.24 Comparison of isotropic Laplacian smoothing with bilateral
filtering of curvatures on a noisy range scan.

74

3.7 Discussion

illustrate how curvature variation is reduced along feature lines with-
out blurring the surface across the features. For comparison we apply
ten smoothing steps in both examples. Boundaries are handled with-
out special treatment. Our formulation operates directly on discrete
curvatures, i.e., scalar attributes defined on each mesh vertex, so that
we avoid local height-field parameterizations of vertex positions, as
for example used in [FDCOo3], that can lead to distortions for larger
neighborhoods or high curvature regions.

In general, not every set of target curvature values is realizable. For
example, there is no 3D embedding of a genus-1 surface with constant
principal curvatures everywhere. Therefore our algorithm tries to meet
the specified curvature constraints as well as possible in a least squares
sense. To evaluate the results of our algorithm we introduce a score
function ¢ that measures the degree to which the prescribed curvatures
are achieved by the optimization procedure. This function is designed
to be a relative measure independent of both scale and sampling and
is defined as

ooy Ao [(Rri = x,)* + (Roi — 15)°]

c=1 - =
Yooy Av [(R1i — x1,1)% + (Roi — K2,1)?]

, (3-23)

where «;; denotes the principal curvatures of the original model.

Higher values indicate that the optimization procedure was better able
to match the desired curvatures. Table 3.1 lists the values of ¢ for the
models shown in Figures 3.20 and 3.21. The differences in the achieved
scores stem from the fact that the metric regularization prevents drastic
changes of the shape and that target curvatures can be incompatible.

3.7 Discussion

Speed. One major challenge of our nonlinear optimization frame-
work is speed. Ideally, the system should provide immediate feed-
back when the user modifies a constraint. Our initial prototype imple-
mentation was only able to achieve interactive response for such edits
on relatively small meshes. The curve bending on the fandisk with

75

3 Constraint-Based Modeling

Fig. 3.20 0 | Bunny o

k1 — 2x; 950 | Clamp 821
K] — 2 944 | Cross-Scale .963
Ko — 0 .858 | Enhance 721
K12 — 1.5 .999
Ko — —Kp .988

/
K12 — K1, -994

Table 3.1 The value o € [0, 1] indicates to what extent the target curva-
tures are achieved by the final model.

6477 vertices took less than 10 seconds on a 2.4 GHz Intel® Core™s2
Duo with 2GB of memory. The edits on the horse and the vase (both
around 8ooo vertices) took 8 to 150 seconds each. Since for 2D defor-
mations smaller triangle meshes are usually sufficient and for every
vertex there are only two instead of three variables, our initial pro-
totype implementation already computed the constraint-based image
deformations within a couple of seconds. Curvature-Domain Shape
Processing is more costly but less time-critical, since most curvature
filtering operations do not mandate a real-time response. For example,
the curvature optimizations on the bunny model with 35,111 vertices,
that is, more than 100k unknowns, took about 2.5 minutes.

In the Master Thesis of Rolf Weilenmann [Weiog] we investigated the
potential of parallelism for our optimization framework. Since prac-
tically all involved terms in the optimization can be computed inde-
pendently, we can heavily exploit the multicore architecture of our
Intel® CPU using the OpenMP™API (www.openmp.org) and GPU
parallelism using CUDA (www.nvidia.com/object/cuda_home.html,
[Nvios, BGo8]) to compute the optimization energies and their deriva-
tives in parallel. Figure 3.25 compares the performance of this ad-
vanced implementation compared to the initial sequential implemen-
tation for the manipulation of curve length shown in Figure 3.3. To test
the scale dependancy of the implementations we run the optimization
for an increasingly denser triangle mesh of the sphere. As shown in
Figure 3.25 the parallel implementation achieves a significant speedup

76

3.7 Discussion

Overall Performance in ms Overall Parallel Speedup
18000 70
— Sequential 60
14000 Parallel
50
10000 40
30
6000 20
2000 10
0 — 0
1000 4000 7000 10000 1000 4000 7000 10000
Problem Size (#vertices) Problem Size (#vertices)
Performance Detail Derivatives in ms
250 ¢
— Position Energy
200 ¢ Metric Energies
— Curvature Energy
150 } — Total
<1% 47%

100 |

50

53%

1000 4000 7000 10000
Problem Size (#vertices)

Figure 3.25 Performance evaluation of our constraint-based modeling
framework for different problem sizes of the curve-length edit shown in Fig-
ure 3.3. Top: Comparison of total running times per iteration between se-
quential and parallel implementation. Bottom: detailed analysis of the parallel
computation of derivatives for the involved energy terms.

77

3 Constraint-Based Modeling

and is 20 to 30 times faster than the sequential implementation, which
enables interactive constraint-based editing for larger meshes. We be-
lieve that an additional performance improvement could be achieved
by a hierarchical representation of the constraints and the surface
to implement multi-level solvers in the spirit of multi-grid methods,
which offers potential for future research.

Memory. For global constraints, such as the integrated area term,
the Jacobian of the objective function might become too dense to fit
into memory if the patch size is too large (see also Section 3.4). On
our 3GB RAM desktop PC this occurred when selecting more than
around one third of a model with 20’000 faces. This could be avoided
by trading off space with speed and recomputing the entries of the
Jacobian for each matrix access.

Advanced Metric Control. The local metric energies employed in
our framework are isotropic measures. For specific edits, however,
the user might want to penalize metric changes in certain directions
more than in others. A challenging extension would be to develop
anisotropic distortion measures and a proper interface that enables an
intuitive control for these energies.

Curvature Domain-Shape Processing — Relation to Existing Tech-
niques. The results shown in the previous section demonstrate the
flexibility of curvature-domain shape processing. Although special-
ized techniques based only on mean curvature exist for some of the ap-
plications presented, our approach offers a different perspective since
the specific geometric operations employed by our method are often
quite different than the ones already known. Investigating these sim-
ilarities and differences for specific applications may lead to new in-
sights about shape processing and suggest avenues of future work in
this area.

The example of Figure 3.24 demonstrates how a standard image pro-
cessing filter can be applied in curvature-domain to implement an ad-
vanced geometry processing tool. We believe that our curvature-based
processing metaphor offers a versatile framework for exploring a vari-
ety of such filtering methods. Another interesting direction of future

78

3.7 Discussion

research is therefore to evaluate different filters for their potential use
in curvature-based geometry processing.

An interesting connection of our approach to continuum mechanics
becomes apparent when comparing the energy function of our com-
bined curvature and metric energies (Equation 3.14) with the elastic
thin-shell energy

E= /ka IT—T||7 4k ||IT — I'|| dudo, (3.24)

where I denotes the matrix representation of the first and II the ma-
trix representation of the second fundamental form (see Chapter 2),
and k; and k;, are stiffness parameters that determine the stretching
and bending resistance of the material [TPBEF87]. In our formulation
we replace the bending term by principal curvature differences, thus
avoiding the directional component of the second fundamental form.
The key difference, however, is that in Equation 3.24 the second funda-
mental form II is computed from a given, initial rest state, whereas we
prescribe arbitrary target curvatures values. Effectively, minimizing
the objective function 3.14 pulls the surface to a “fictitious” rest state
defined by the target curvatures.

Rusinkiewicz observed [Ruso4] that the curvature tensor proposed by
Cohen-Steiner and Morvan can yield a poor approximation of the true
curvatures for small local neighborhoods at low-valence vertices. In
our optimization this can lead to local distortions that diminish the
quality of the final result. In general, we observed that the perfor-
mance degrades with poor input mesh quality, since the estimation
of curvatures and corresponding derivatives becomes numerically un-
stable. Our experiments indicate that these artifacts can be reduced
by applying appropriate local remeshing operations, e.g., [SGo3], to
improve the stability of the curvature estimation.

79

3 Constraint-Based Modeling

w/o length constraints Original with length constraints

Figure 3.26 Spherical conformal parameterization computed by prescrib-
ing constant curvature. On the right the marked curves are constrained to
keep their original length.

Combined Constraints Figure 3.26 illustrates a potential applica-
tion that offers potential for future work. We can evolve the fandisk
towards a sphere by setting all principal curvatures to a constant. With
a high conformal energy term, this yields a quasi-conformal spherical
parameterization of the model that can be customized with the use of
additional metric constraints. Conceptually, this approach is similar to
recent methods for planar conformal mappings [BCGBo8, SSPo8].

80

c H A P T ER

Paneling Architectural
Freeform Surfaces

4.1 Introduction

Freeform shapes play an increasingly important role in contemporary
architecture. With the emergence of large-scale architectural freeform
surfaces the essential question arises of how to proceed from a geomet-
rically complex design towards a feasible and affordable way of pro-
duction. This fundamental problem, in the architectural community
referred to as rationalization, is largely related to the issue of paneling,
i.e., the segmentation of a shape into simpler surface patches, so-called
panels, that can be fabricated at reasonable cost with a selected manu-
facturing process (see Figure 4.1). The paneling problem can arise both
for the exterior and interior skin of a building, and plays a central role
in the design specification phase of any architectural project involving
freeform geometry.

Recent technological advances enable the production of single- and
double-curved panels that allow a faithful approximation of curved

81

4 Paneling Architectural Freeform Surfaces

plane
cylinder
paraboloid

torus
cubic

identical

cylinder = .

molds

reuse of fabrication molds panel types

Figure 4.1 Rationalization of large-scale architectural freeform surfaces
with planar, single-, and double-curved panels. Our algorithm computes a
paneling solution that meets prescribed thresholds on positional and normal
continuity, while minimizing total production cost. Reuse of molds (left) and
predominant use of simple panels (right) are important drivers of the opti-
mization. (Left: Zaha Hadid Architects, Lilium Tower, Warsaw. Right: Zaha
Hadid Architects, National Holding Headquarters, Abu Dhabi.)

82

4.1 Introduction

surfaces. While planar panels are always the most cost-effective, the
progression towards the more expensive general freeform panels de-
pends on the panel material and manufacturing process. Table 4.1
provides an overview of the state-of-the-art in architectural panel pro-
duction. Most commonly, curved panels are produced using molds
with the cost of mold fabrication often dominating the panel cost (see
Figure 4.9). There is thus a strong incentive to reuse the same mold for
the production of multiple panels to reduce the overall cost.

Our goal is to find a paneling solution for a given freeform design that
achieves prescribed quality requirements, while minimizing produc-
tion cost. The quality of the paneling is mainly determined by the ge-
ometric closeness to the input surface, the positional and normal con-
tinuity between neighboring panels, and the fairness of corresponding
panel boundary curves. The cost mostly depends on the size and num-
ber of panels, the complexity of the panel geometry, and the degree of
reuse of molds that need to be custom-built to fabricate the panels. A
key objective of our work is to solve instances of the paneling prob-
lem on large-scale architectural freeform designs that often consist of
thousands of panels. Due to the high complexity and global coupling
of optimization objectives and constraints, manual layout of panels for
these freeform surfaces is infeasible, mandating the use of advanced
computational tools.

The paneling problem is a constraint-based surface approximation
problem involving highly complex geometric constraints:

* The objective to minimize cost imposes constraints on the geom-
etry of the panel shapes such that the panels can be efficiently
produced and that mold reuse is computationally feasible.

* The quality requirements directly impose geometric constraints
on the distances and angles between neighboring panels and the
distances of the panels to the input design surface.

The paneling problem is also an engineering problem and the results
of our paneling algorithm are eventually used as an input to actually
manufacture architectural freeform structures. The constraint-based
surface paneling problem is therefore of a different nature than the
constraint-based surface modeling problem discussed in Chapter 3

83

4 Paneling Architectural Freeform Surfaces

surface types

manufacturing possibilities

glass

metal

fibre reinforced
concrete/plastic

single curved

isometric to the plane, no or little plastic deformation of material

cylindrical machlne for roll configurable mold
arts of right * bending and bendi or custom hot-
Eircular cy%inders g~ | thermal r;:d:;% wire cut foam
> tempering mold
ical configurable or configurable mold
conica f rich custom mold, no or custom
fiiztjlgr Zi)gnets thermal machine | hot-wire cut foam
tempering or re- mold
] config-
general single custom mold, no urabl%: _
curved thermal custom hot-wire
developable > . mold cut foam mold
surfa ce?s 7y f tempering

double curved

usually plastic deformation of material is involved

line

rotational
carries one family
of congr. profiles

.
-
L

custom molds, | machine
general double no thermal or re- custom molds
curved tempering of config- commonly made
glass urable of EPS foam
mold
general ruled
generated by a straight lines foam molds can
moving straight can be exploited see above be hot-wire cut

translational
carries two -
families of congruent congruent profiles
. profiles can be can be exploited
congruent profiles .
exploited

Table 4.1 Classification of panel types and state-of-the-art production pro-
cesses for common materials in architecture. This table is for a rough guide-
line and do not cover all the relevant production processes. Planar panels have
been left out. (Classification created by Evolute, www.evolute.at)

84

4.1 Introduction

and requires different algorithmic strategies. Certain constraints like
the distance between neighboring panels have to be met exactly and
not only in a least squares sense. Additionally, the problem involves
not only continuous but also discrete variables like how many and
which types of molds should be used, and which molds should pro-
duce which panel. While a least squares optimization similar to the
one introduced in the previous Chapter is an essential ingredient of
our paneling algorithm, we present new computational tools to solve
the particular challenges of the paneling problem.

4.1.1 Contributions

We introduce a computational approach to freeform surface paneling.
As our main contributions, we

* identify the key aspects of the paneling problem that are
amenable to computation and derive a mathematical framework
that captures the essential design goals,

* present an algorithmic solution based on a novel global optimiza-
tion method that alternates between discrete and continuous op-
timization steps to meet paneling quality constraints while re-
ducing cost through mold reuse,

* introduce a novel 6-dimensional metric space to allow fast com-
putation of approximate inter-panel distances, which dramati-
cally improves the performance of the optimization and enables
the handling of complex arrangements with thousands of panels,
and

* demonstrate the practical relevance of our system by computing
paneling solutions for real, cutting-edge designs that currently
cannot be realized at the desired aesthetic quality.

4 Paneling Architectural Freeform Surfaces

4.1.2 Related Work

Early contributions to the field of freeform architecture come from re-
search at Gehry Technologies (see e.g. [Sheoz]). These are mostly
dedicated to developable or nearly developable surfaces, as a result of
the specific design process that is based on digital reconstruction of
models made from material that assumes (nearly) developable shapes.

Research on freeform architecture is promoted by the Smart Geom-
etry group (www.smartgeometry.com), whose interest so far mostly
focussed on parametric design tools. These can be helpful for shape
generation processes that have panel properties built into them. How-
ever, such a forward approach makes it very difficult to achieve the
desired shapes and obtain a satisfactory paneling solution for suffi-
ciently complex geometries.

Most previous work on the paneling problem deals with planar pan-
els. Initial research in this direction dealt with special surface classes
[GSC"o0z2]. Covering general freeform surfaces with planar quad pan-
els could be approached with methods of discrete differential geome-
try [BSog] and led to new ways of supporting beam layout and the re-
lated computation of multi-layer structures [LPW 06, PLW "o07]. This
approach was extended to the covering of freeform surfaces by single-
curved panels arranged along surfaces strips [PSB"08]. Additional
results in this direction, e.g., hexagonal meshes with planar faces, have
been presented at “Advances in Architectural Geometry” [PHKo08].
The idea of optimizing for repeated elements by altering the vertex po-
sitions of a given mesh is explored by Fu et al. [FLHCO10] in the con-
text of quad meshes and by Singh and Schaefer [SS10] in the context
of triangle meshes, in order to create a set of reusable pre-fabricated
tiles.

Our approach bears some similarity to variational methods for ap-
proximating a surface with simple geometric primitives. Originally
introduced by Cohen-Steiner et al. [CADo4] for surface approximation
by planes, various extensions have been proposed for additional sur-
face types, e.g., spheres and cylinders [WKos], quadrics [YLWo6], or
developable surfaces [JKSos]. In [LSSKog], an optimization has been
proposed to simultaneously partition the input surface, as well as de-

86

4.1 Introduction

-

Figure 4.2 Projects involving double-curved panels where a separate mold
has been built for each panel. These examples illustrate the importance of the
curve network and the challenges in producing architectural freeform struc-
tures. (Left: Peter Cook and Colin Fournier, Kunsthaus, Graz. Right: Zaha
Hadid Architects, Hungerburgbahn, Innsbruck.)

termine the types and number of shape proxies required. These meth-
ods optimize for a surface segmentation to reduce the approximation
error. In our setting, the segmentation is part of the design specifica-
tion and we optimize for position and tangent continuity across panel
boundaries, allowing systematic deviations from the reference surface
to improve the paneling quality and reduce cost. Enabling mold reuse
and aesthetic control, which are key requirements of architectural ra-
tionalization, necessitates a substantially different approach both in
the underlying formulation of the optimization as well as its imple-
mentation. Similarly, state-of-the-art methods in surface fitting and lo-
cal registration (see e.g. [VMo2, Shao8]), while an integral component
of our system, are insufficient to solve large-scale freeform paneling
problems.

In shape analysis, the problems of symmetry detection [MGPo6,
PSG'06] and regularity detection [PMW "08] involve identification
and extraction of repeated elements, exact and approximate, in 3D
geometry. Subsequently, detected repetitions can be made exact by

87

4 Paneling Architectural Freeform Surfaces

symmetrization using subtle modifications of the underlying mesh-
ing structure [MGPoy, GPFog] thus deforming a surface towards an
exact symmetric configuration. These methods, designed to enhance
detected symmetries, are unsuited for handling architectural freeform
designs where large repeated sections are exceptions rather than the
norm. Our optimization has a similar symmetrizing effect in enabling
trading approximation error for a stronger degree of mold reuse, lead-
ing to significant savings in terms of manufacturing cost.

4.2 Problem Specification

In this section we introduce a specification of the paneling problem and
the corresponding terminology common in architectural design (see
Figure 4.3). The specification is the result of extensive consultations
of our collaborator Evolute with architects and Evolute’s experience
with real-world freeform design projects, some of which we highlight
in Section 4.4.

4.2.1 Terminology

Panels and Molds. Let F be the given input freeform surface de-
scribing the shape of the design. Our goal is to find a collection
P = {P,...,P,} of panels P;, such that their union approximates F.
The quality of the approximation strongly depends on the position
and tangent continuity across panel boundaries: Divergence quantifies
the spatial gap between adjacent panels, while the kink angle measures
the jump in normal vectors across the panel intersection curves.

Curved panels are commonly produced using a manufacturing
mold M. We call the collection M = {My,..., M} with m < n
the mold depot. To specify which mold is used to produce which
panel(s), we define a panel-mold assignment function A : [1,n] — [1, m]
that assigns to each panel index the corresponding mold index. The
arrangement of panels in world coordinates is established by rigid
transformations T; that align each panel P; to the reference surface F.

88

4.2 Problem Specification

normal n(x)
kink angle L

——

divergence \ / curve network C

curve samples ¢,
- surface segment s;

,//
A

< “"ss/'"‘

S el

200m

transformation T;
\ : cylinders tori cubics
reference surface F mold depot M

Figure 4.3 Terminology and variables used in our algorithm. The reference
surface F and the initial curve network C are given as part of the design
specification. The optimization solves for the mold depot M, the panel-mold
assignment function A, the shape parameters of the molds, the alignment
transformations T;, and the curve network samples cx.

4 Paneling Architectural Freeform Surfaces

Panels produced from the same mold are sub-patches of the mold
surface and need not be congruent.

Let c(My) be the fabrication cost of mold My and ¢(M;, P;) the cost of
producing panel P; using mold M; (see also Figure 4.9). The total cost
of panel production can then be written as

m n

cost(F, P, M, A) = Y " c(My) + Y c(Mag),). (4.1)

k=1 i=1

Ideally, the same mold will be used for the fabrication of multiple pan-
els to reduce cost. The choice of panel types depends on the desired
material and on the available manufacturing technology. Materials
may be transparent or opaque, and include glass, glass-tibre reinforced
concrete or gypsum, various types of metal, and wood.

Currently we support five panel types: planes, cylinders, paraboloids,
torus patches, and general cubic patches. Planar panels are easiest
to produce, but result in a faceted appearance when approximating
curved freeform surfaces, which may not satisfy the aesthetic criteria
of the design. A simple class of curved panels are cylinders, a spe-
cial case of single-curved (developable) panels. Naturally, such panels
can lead to a smooth appearance only if the given reference surface
exhibits one low principal curvature. General freeform surfaces often
require double-curved panels to achieve the desired tolerances in fit-
ting error, divergence, and kink angles. We consider three instances
of such panels: paraboloids, torus patches, and cubic patches. The
former two carry families of congruent profiles (parabolae and circles,
respectively), which typically simplifies mold production. Cubic pan-
els are most expensive to manufacture, but offer the highest flexibility
and approximation power. Thus a small number of such molds are
often indispensable to achieve a reasonable quality-cost tradeoff.

Curve Network. The intersection curves between adjacent panels
are essential for the visual appearance of many designs (see Figure 4.2)
and typically affect the structural integrity of the building, as they of-
ten directly relate to the underlying support structure. An initial layout
of these curves is usually provided by the architect as an integral part
of the design. While small deviations to improve the paneling quality

90

4.2 Problem Specification

are typically acceptable, the final solution should stay faithful to the
initial curve layout and reproduce the given pattern as well as pos-
sible by the intersection lines of adjacent panels. Our paneling algo-
rithm supports arbitrary curve network topology and is not restricted
to predefined patterns. The collection of all panel boundary curves
forms the curve network that we denote with C. Projecting C onto the
input freeform surface F yields a partitioning of F into a collection
S = {s1,...,5n} of segments s;. The panel P; associated with segment s;
can be created by trimming the aligned mold surface M} := T;(My;).
The trim curves are obtained by projecting the network curves associ-
ated with segment s; onto M.

4.2.2 The Paneling Problem

We formulate the paneling problem as follows: Approximate a given
freeform surface by a collection of panels of preferred types such that
the total production cost is minimized, while the paneling respects
pre-defined thresholds on divergence and kink angle between adjacent
panels, and reproduces the initial curve network as well as possible. A
closer look at this specification reveals that any solution of the paneling
problem has to address the following central aspects:

* Mold Depot: determine the number and types of molds that
should be fabricated.

* Assignments: find the optimal assignment function to establish
which panel is best produced by which mold.

* Registration: compute the optimal shape parameters for each
mold and the optimal alignment of each panel such that the ref-
erence surface is faithfully approximated, thresholds on kink an-
gles and divergence are met, and the panel intersections curves
respect the design intent.

Mold depot and assignment function determine the total cost of fabri-
cation, while registration affects the quality of the rationalization. Min-
imizing fabrication cost calls for a maximum amount of mold reuse
and the wider use of panels that are geometrically simple and thus

o1

4 Paneling Architectural Freeform Surfaces

cheaper to manufacture (see Equation 4.1). On the other hand, achiev-
ing the design constraints on the paneling quality pushes the solution
towards more complex panel shapes with less potential for mold reuse.

The high intricacy of the paneling problem arises both from the large
scale of typical projects (1k — 10k panels) and the tight global coupling
of objectives. Neighboring panels are strongly linked locally through
kink angle and divergence measures, but also subject to a highly non-
local coupling through the assignment function that facilitates mold
reuse. The cost-quality tradeoffs involved in using different mold types
add additional complexity: It is obvious that we want to use as many
cheap, simple molds as possible. However, adding one expensive mold
might save us from having to add many cheap molds whose total cost
might be higher. Also, using a complex mold at certain places may
enable the use of simpler panels in its surroundings.

4.3 Paneling Algorithm

A key design decision in our paneling algorithm is to represent the
curve network explicitly as a set of polygonal curves, rather than com-
puting the boundary curves from the intersection of neighboring pan-
els (Figure 4.3). By integrating the corresponding curve vertices ci as
free variables in our system, we gain several important advantages. In
particular, we

* avoid numerical instabilities when explicitly computing intersec-
tions of neighboring, nearly tangent-continuous patches,

* simplify the specification of surface fitting and continuity con-
straints across neighboring panels (see Section 4.3.1),

* achieve better quality at lower cost by allowing the curves to
move away from the reference surface as part of the optimiza-
tion (see Figure 4.4), and

¢ provide essential means of control for the designer, who can ex-
plicitly specify where neighboring panels should intersect.

92

4.3 Paneling Algorithm

max. deviation: 0.018m total cost: 11,499
Om e a 1m

max. deviation: 1.3m total cost: 7,285

Figure 4.4 Our algorithm allows controlling the amount of deviation from
the reference surface, shown here for the example of the Lilium tower. Larger
deviations enable a more cost-effective solution using cheaper panels, while
still satisfying the thresholds on kink angle and divergence.

An important aspect of the paneling problem is the need to simulta-
neously solve for both discrete and continuous variables. The discrete
variables are the number and type of molds constituting the mold de-
pot M, and the panel-mold assignment function A. The continuous
variables are the shape parameters of the molds, the transformations
T; that align mold M ,(;, to segment s;, and the positions of the curve
network samples c.

Given a mold depot M and assignments A, we use a continuous non-
linear least-squares optimization (Section 4.3.1) to globally improve the
curve network and mold alignments. Similar to the least squares op-
timization presented in Chapter 3 the optimization minimizes diver-
gence, kink angles, and the deviation of the paneling solution from the
reference surface. Such a least-squares optimization alone, however,
does not ensure that the user-specified thresholds on kink angles and
divergence are met, nor can it be used to determine a mold depot or as-

93

4 Paneling Architectural Freeform Surfaces

signments. The core challenge and main contribution of our algorithm
is to find a mold depot and an assignment function that minimize cost
and at the same time meet the specified thresholds. Minimizing cost in
geometric terms means approximating the design with as many sim-
ple and repetitive elements as possible. In Section 4.3.2 we show how
this difficult objective can be mapped to a generalized set cover prob-
lem, a classical problem in computer science. Figure 4.5 demonstrates
the effectiveness of the set cover optimization compared to alterna-
tive techniques to enable mold reuse on an illustrative example. We
present an efficient approximation algorithm that on its own provides
a solution to the paneling problem. Due to the exponential complexity
of possible mold-panel assignments this algorithm can only employ lo-
cal registrations and therefore neither supports globally coupled con-
tinuous registration nor optimization of the curve network to allow
deviations from the reference surface. Since the algorithm described
in Section 4.3.2 enables solving for all the discrete variables we call it
Discrete Optimization in contrast to the global Continuous Optimization
of Section 4.3.1. To combine the strengths of the discrete and contin-
uous optimization we present an iterative scheme in Section 4.3.3 to
interleave the two to obtain a powerful global paneling algorithm. We
demonstrate in Figure 4.11 how this interleaved iteration significantly
improves the paneling compared to only applying the algorithm de-
scribed in 3.2.

4.3.1 Continuous Optimization Step

The continuous step aims at reducing the deviation to the reference
surface, the divergence, and the kink angles by optimizing the contin-
uous variables, i.e., the shape parameters of the molds, the rigid align-
ments of mold surfaces to segments, and the positions of the curve
network samples. During this optimization, the panel-mold assign-
ments are kept fixed.

A mold surface M is specified in a canonical coordinate system as a
function of a set of parameters that we store in a vector my (see Ap-
pendix B). Depending on the type of mold surface, m; contains zero
(plane) to six entries (cubic). The rigid transformations T; that align

94

4.3 Paneling Algorithm

e \

~

~ . o
N) . . max. angle: 8.7
\ \

— || —

mold radii [21.8| 15 | 8.2
of panels| 16 | 16 | 16

(@) Design Curve (b) Clustering radius

max. angle: 4.2° max. angle: 2.9°

mold radii | 18.6[10.3| 6.2 mold radii |14.8| 8 | 5.4
#ofpanels| 28 | 13 | 7 #ofpanels| 35 | 9 | 4
(c) Clustering (1 / radius) (d) Set Cover Optimization

Figure 4.5 Illustrative comparison of different techniques for mold reuse.
The input design curve curve shown in (a) consists of nicely aligned circle
arcs with decreasing radii from 25 to 5. The method shown in (b) clusters
these radii (using k-means clustering) to obtain 3 molds and assigns the best
mold to each segment. The colors indicate the segments sharing the same
mold. The method shown in (c) does the same, but performs a clustering of
(1/radius) instead of clustering the radius itself, which is a much better dis-
tance approximation for cylinders as shown in Appendix B and therefore the
maximal kink angle is already much lower. The method shown in (d) performs
the full set cover optimization described in Section 4.3.2 and leads to an even
better mold depot that enables a paneling with very low kink angles. The dif-
ferences presented on this schematic example become even more prominent if
more complex surfaces and/or panel types are involved.

95

4 Paneling Architectural Freeform Surfaces

mold surface M ;) to the corresponding surface segment s; are initial-
ized by the the local alignments computed in the discrete optimization.
The curve network C is represented by samples ¢; € R =1,...,L,
where L ~ 9|S| in all our examples. We denote with i(/) and j(I) the
indices of the two surface segments adjacent to the boundary curve
sample c¢;. For notational brevity of the subsequent formulae, we
omit the more complex adjacencies at corner points of the curve net-
work. These are handled analogously by considering all combinations
of neighbors.

The explicit representation of the curve network enables direct con-
trol of the panel intersection curves and allows formulating objective
functions for inter-panel position and tangent continuity using sim-
ple closest-points projections. Effectively, the curve network serves as
a “glue" that binds the panels to the surface at the curve samples.
Since the manufacturing process mandates that the panel surfaces are
smooth and exhibit a low variation of curvature, we found that addi-
tional samples in the interior of the segments are not required.

Surface Fitting. The deviation of the curve network from the un-
derlying reference surface F is measured as

L

Ege =) e — £ (4-2)
=1

where f; is the closest point on F from c;.

Divergence. = We measure the divergence indirectly using the dis-
tances between the curve network samples and the closest points of
the adjacent aligned mold surfaces as

L
Egiv = Y ller = x|+ ller = x;0[1% (4-3)
=

where x;(y is the point closest to ¢; on the aligned mold surface le‘(l).
The point x;; is defined analogously. Minimizing Eg;, ensures that
neighboring panels fit together nicely without leaving undesirable
gaps and that the curve network stays spatially close to the aligned
mold surfaces.

96

4.3 Paneling Algorithm

Kink Angles. Tangent continuity is achieved by minimizing the kink
angle energy

L
Exink = Z Hn(xi(l)) - H(Xj(l)) ||2/ (4-4)
I=1

*

where n(x;()) is the normal vector of the aligned mold Ml(l) at x;(),
and analogously for n(x;(;) (Figure 4.3).

Curve Fairness. The curve network is coupled to the surface
through the surface fitting energy, but can move freely along the sur-
face. To maintain the design intent encoded in the initial curve lay-
out, we need to prevent strong undulations and large tangential mo-
tions of the boundary curves. Fortunately, the explicit representation
of the curve network allows us to directly control its motion. We avoid
tangential drift entirely by restricting the displacements of the curve
network to the normal direction of the underlying reference surface.
This simplification has the additional benefit of reducing the number
of optimization variables for the curve network to one third and thus
significantly improves performance. The shape of the curves is con-
trolled using an additional fairness term on the curve deformation.
Let ¢; = ¢ + dinj, where ¢ is the initial position of the curve network
sample on the reference surface, n; is the corresponding surface nor-
mal, and d; is the displacement magnitude. A fairness term (see also
Section 2.1) can then be defined directly on the normal displacements
as

Efair = Z (dh - d]'z)zf (4.5)

(hj2)ecC

where (j1,2) is an index pair denoting an edge of the polygonal rep-
resentation of the curve network C.

Panel Centering. With the exception of plane and cylinder molds,
we need an additional energy term to facilitate mold reuse. Panels that
are fabricated from the same mold should cover a similar region of the
mold surface to reduce wastage in fabrication. For this purpose we
add a centering energy that minimizes tangential drifting of the mold
center away from the segment center:

Ecen = Z |b; — PiHZ- (4.6)
i=1

97

4 Paneling Architectural Freeform Surfaces

mold base surface -

Figure 4.6 A low weight for E..,, may result in scattered molds (red) over
a base primitive leading to wastage and increased cost. A higher weight re-
sults in tightly clustered molds (green) enabling cost-effective production of a
significantly smaller mold.

Here b; is an approximation of the barycenter of segment s; computed
as the average of all adjacent curve segment samples, and p; is the pro-
jection of b; onto the mold-surface normal at the center of the aligned
mold M. For torus molds we include an additional variable that posi-
tions the center along the defining circle (see Appendix B). Figure 4.6
illustrates the effect of the centering energy.

Global Optimization. The above continuous energy terms are com-
bined into a global energy

E = “fitEfit + (xdiVEdiV + “kinkEkink + D‘fairEfair + (xcenEcen/ (47)

where the weights « allow additional control of the optimization. The
unknown variables in E that we solve for are: the mold parameters
my, the rigid transformations T;, and the positions of the curve net-
work samples ¢;. For the T; we use the formulation based on instan-
taneous velocities that ensures rigidity of the transformation [PWo1].
The global energy E is minimized using a Gauss-Newton solver. See
Section 2.2 for an extensive discussion on nonlinear least squares prob-
lems and solvers.

Parameters. As detailed in Section 4.3.2, our system allows the
user to provide thresholds € for divergence and ¢ for kink an-
gles. To balance the corresponding optimization objectives, we set
aank = (€/6)%aqiy in Equation 4.7. This ensures that a divergence

98

4.3 Paneling Algorithm

of € receives the same penalty as a kink angle of . The free parame-
ters have an intuitive meaning and offer direct control of the paneling
quality. The specific values for these parameters depend on the user
preferences. Figure 4.4 illustrates the effect of ay; to control the devi-
ation from the reference surface using values of 0.0001 and 1000, re-
spectively. Figure 1.6 demonstrates the influence of acen. For all other
examples we use the same set of parameters: ag = 1, agiy = 1000,
Ufair = 1, Keen = 10.

4.3.2 Discrete Optimization Step

The discrete optimization finds a mold depot and a corresponding
panel-mold assignment function that minimize cost while respecting
the specified divergence and kink angle thresholds. During the dis-
crete optimization, the curve network is fixed. The essential geometric
information required in this step is stored in the curve network sam-
ples and corresponding normal vectors that we obtain by averaging
for each curve network sample the normals of all neighboring panels
of the current solution. We therefore represent each surface segment
by the associated curve network samples and normals, and use these
to evaluate divergence and kink angles. This segment representation
allows an efficient fitting of molds to segments based on local registra-
tion independent of the neighboring panels, using local versions of the
divergence, kink angle, and centering energies (Equations 4.3, 4.4, 4.6).

To enrich the mold depot, we first create new candidate molds by lo-
cally aligning each of the available panel types to each of the segments.
These t|S| new molds, where ¢t is the number of panel types, together
with the existing mold depot of the current solution form the set M’
of candidate molds. The algorithm optimizes for a new mold depot as
a subset M C M/’ of all candidate molds that enables paneling at min-
imal cost, while satisfying the current thresholds on divergence and
kink angle.

Set Cover. Assume that we have determined for each mold
My € M’ the set S = {sk,,..., sk} of surface segments that can be
approximated by M; within the prescribed tolerances. We can com-

99

4 Paneling Architectural Freeform Surfaces

pute the potential fabrication costs attributed to set Sy as ¢(Sk) =
c(Mg) + |Sk| c¢(My, Py), i.e., the cost of the mold plus for all assigned
panels the cost ¢(My, P.) of producing a panel with mold M.

Finding the optimal mold depot and mold-segment assignments now
amounts to covering the set of segments S = {sy,...,s,} with sets S
of minimal total cost. This optimization is reminiscent of the classi-
cal weighted set cover problem [Joh74], where the weights correspond
to production costs. While this problem is known to be NP-hard, a
polynomial-time approximation strategy can be used to find an ap-
proximate solution whose cost is guaranteed to be within logn times
the cost of the optimal solution. It has been shown that logn is
the best possible approximation ratio of any polynomial-time algo-
rithm [Feig8].

What distinguishes our setting from the classical weighted set cover
problem is that each segment is eventually assigned to only one set.
Thus our weights (costs) depend on which segment is assigned to
which set: Once a mold has been chosen, all segments covered by the
corresponding set have to be removed from the sets of the remaining
candidate molds. Nevertheless, as shown in Appendix A.2, the proof
for the log n approximation ratio of the polynomial-time weighted set
cover algorithm directly translates to our more general setup.

Algorithm. Let &’ C S be the set of all uncovered segments at
any point of the algorithm. We define the efficiency of a set Sy relative
to S’ as the function ¢(Sk, S’) = |Sk|/c(Sk), where both the size of
the set Sy and its cost are adapted to only consider elements in &’.
Efficiency measures the number of panels for segments in &’ that can
be produced by mold M relative to the corresponding cost. Let o be
the unknown collection of covering sets and ¢’ the collection of all sets
Sk that have not yet been chosen for .

Our algorithm to determine the covering sets starts with an empty
collection ¢. Thus the collection ¢’ contains the sets S; of all candidate
molds in M’ and the set &’ contains all segments that can be covered
with the sets in ¢/. We then successively add the set S; with highest
efficiency to the current solution. The segments of S; are removed from

100

4.3 Paneling Algorithm

S’ the efficiency of all remaining sets is updated, and the algorithm is
iterated until all segments are covered.

o — Q, (T’<—{81,...,S|M/‘}, S’<—S1U...U«5|M/|
while &' £ @
eval. ¢(Sk, ') VSk € ¢ update efficiencies
S; « argmaxg,co ¢(Si, S') set with max. efficiency
c—ocU{S;} add to covering sets

S — 8 -8, 0 — 0o —{S;} remove covered segments

end

The covering sets in the solution ¢ define the mold depot M. For all
segments that cannot be covered by any of the initial sets Sy we add
and assign the best-fit cubic mold. Once the mold depot has been se-
lected, a gather step re-computes the panel-mold assignment function
by selecting for each segment the cheapest valid mold from the de-
pot M. In case a segment is covered by multiple molds of the same
cost, we pick the one with the smallest maximal distance to the curve
network.

Sets Initialization. A critical bottleneck in the set cover optimiza-
tion is the estimation of the initial sets S;. To avoid the exhaustive com-
putation of aligning every mold with every segment using nonlinear
registration, we implement a pruning step that discards mold-segment
pairs based on a conservative estimate of the corresponding registra-
tion distance. For this purpose, we introduce a 6D metric space that
facilitates efficient approximate distance computations between molds
and surface segments without the need for an explicit alignment.

We first select for each segment s; its least-squares optimal cubic mold
Ci € M’ as the segment’s representative. The cubic mold C; provides
the best local approximation possible for this segment in the current
configuration. To estimate whether a given mold surface My € M'is a
suitable candidate for segment s;, we compute an approximate align-
ment distance between M, and C;. By mapping both patches to points
in a 6D space as described in Appendix B, this computation amounts
to simple Euclidean distance evaluations. Finding potential molds to

101

4 Paneling Architectural Freeform Surfaces

iteration O iteration 3 iteration 6 iteration 10

10mm, 5.0°
cost 12,779 13,353 14,459

Figure 4.7 Progressive panel assignments for different iterations (decreas-
ing thresholds) of the paneling algorithm (Lilium tower).

fit a given segment then only requires a range query in the 6D space
that is performed efficiently using spatial data structures such as a
kd-tree [AM93]. This pruning step typically leads to a reduction in
explicit mold-segment registrations to about 1% — 5%. For this sub-
stantially smaller set, we then perform the full nonlinear registration
as described above to build the sets Sy.

4.3.3 Interleaved lteration

Our algorithm iteratively executes the discrete and continuous opti-
mization steps in an interleaved fashion. The exponential number of
possible panel-mold assignments mandates the use of local registra-
tion methods in the discrete optimization. As a result, the set cover
algorithm produces a mold depot and assignment function that is too
costly for the given thresholds. Therefore, we start the iterations with
thresholds well above the specified target values € for divergence and
J for kink angles. Thresholds are then successively reduced after each
iteration until the target values are reached.

We use the following fixed scheduling scheme for all our examples:
We start the optimization with €’ = € + 10mm and ¢’ = 6 + 5° and ap-
ply 10 iterations of alternating discrete/continuous optimization steps,
reducing the thresholds in each iteration by 1mm and 0.5°.

102

4.4 Evaluation and Discussion

The algorithm starts with a mold depot consisting of a single plane.
We perform an initialization step that first determines all panels that
do not meet the target thresholds (¢,d). These panels are replaced by
locally fitting a separate mold of the cheapest type that satisfies the
thresholds (€’,4"). Subsequently, we perform a continuous optimiza-
tion step. This initialization is applied before every discrete optimiza-
tion to reverse unsuccessful assignments of the set cover and avoid a
premature fixing of panel-mold assignments.

The inner loop of the optimization consists of the following steps:
* discrete optimization
* continuous optimization
* re-initialization
e reduce €,¢’

At the end of the optimization we apply a discrete step using the target
thresholds to generate the final mold depot and assignment function.
Figure 4.7 illustrates the iterations of the paneling algorithm. Panels
for which the target thresholds cannot be met mandate the fabrica-
tion of custom freeform molds. An important benefit of our approach
is that the global discrete/continuous optimization leads to a small
number of these custom molds (see also Figure 4.11).

4.4 Evaluation and Discussion

Means of Control. = We allow the designer to explore the space of
paneling solutions using two main modes of control: (i) specifying
the quality using thresholds for divergence and kink angles (see Fig-
ure 4.8), and (ii) allowing the paneling solution to deviate from the ref-
erence surface in order to achieve a more cost-effective solution while
maintaining the original design intent (see Figure 4.4). Due to our
choice of ag; (Section 4.3.1) the maximal deviation from the reference
surface is within 10-20cm for all our results (average panel size 4m?).
Unless stated otherwise, we use the cost set of glass panels as denoted
in Figure 4.9 and the target thresholds (€,6) = (6mm,3°).

103

4 Paneling Architectural Freeform Surfaces

Panel types §20° (e, §) = (6mm, 9°)
max.
plane[[torus .0 total cost: 18,672
cylinder [| [l cubic 5pgle _
paraboloid | |] custom 0° | molds | - |354| 95
reference planes only panels [3178(3667| 228 | 23 | 166

surface total cost: 7,265

1
,,,,,,
1

<y
i e,
§-

=

=

(¢, 8) = (6mm, 3°) (g, 8) = (6mm, 1°)

total cost: 27,418 total cost: 54,173
molds | - | 312|158 molds | - |263|236 265|551 | 196
panels |2907|3389| 395 | 142 | 421 | 11 panels |1164|3680| 603 | 526 |1096| 196

e a=

Figure 4.8 Paneling results with varying kink angle thresholds é and fixed
divergence thresholds € = 6mm for the design of the National Holding Head-
quarters. The images in the top left corner show a solution using only planar
panels of which 3,796 do not meet the prescribed divergence threshold. The
zooms show reflection lines to illustrate inter-panel continuity which succes-

sively improves with lower kink angle thresholds.

104

4.4 Evaluation and Discussion

glass
cost/mold| 0 | 2 |18 |24 |30 molds | - 91 |101| 57 [112| 6

cost/panel| 1 |2 |5 |5 |5 panels | 224 |1660| 282 | 78 | 150 | 6

cost/mold| 0 | 6 | 8 | 8 | 8 molds | - | 58 | - | 12 |280| 2
cost/panel| 1 |4 | 5|5 |5 panels | 229 {1592 - | 53 | 524 | 2

Figure 4.9 Glass vs. concrete. Different relative costs for mold fabrica-
tion and panel production for two different materials affect the distribution of
panel types. For glass, costs for producing double curved molds are signifi-
cantly higher than for concrete, resulting in a solution with more cylindrical
panels. (Zaha Hadid Architects, interior skin of Heydar Aliyev Merkezi Cul-
tural Center, Baku.)

105

4 Paneling Architectural Freeform Surfaces

Case Studies. Paneling solutions strongly depend on the design
(reference surface and curve network), the choice of material, and the
manufacturing technology. We explore the implications of these de-
sign decisions on various contemporary architectural freeform projects
from leading architects in Figures 4.9, 4.12, and 4.10. Figure 4.13 com-
pares our paneling solution to the original, perfectly smooth reference
design. Figure 4.11 demonstrates the effectiveness of the core compo-
nents of our paneling algorithm. The most complex case study is the
Dongdaemun Design Plaza and Park project (Figure 4.11) consisting of
8,385 panels. For this example, one step of discrete optimization takes
on average 30 minutes, while one step of continuous optimization re-
quires about 10 minutes, leading to a total computation time of 430
minutes. All computations are performed on a 3GHz Intel® Core™2
Duo with 3Gb of memory.

40! cylinders
30!
20+ H H
10}
L0 HH HHH H
5 10 15 20
40} paraboloids
30!
20} H
10}
I Hﬁ HHH
5 10 15 20
40! tori | [cubics
30! I
201 I
10»H I
I [l | I LJ
5 10 5 10

Figure 4.10 Distribution of panel types and mold reuse for two different
refinement levels of the curve network. The histograms on the right illustrate
mold reuse for the top image, where the x-axis denotes how many panels can
be produced by a mold and the y-axis indicates the number of panels corre-
sponding to these molds. (Mario Bellini Architects, Rudy Ricciotti, Museum
of Islamic Arts at Louvre Museum, Paris.)

106

4.4 Evaluation and Discussion

total cost:
molds | - [3793(2023
98,232
panels |1559|3793|2023
total cost:
molds | - | 506 | 144
e s : 51,397
panels [1557/3794|1414| 122 [1297| 201 TR — =
discrete optimization
total cost:
Id - | 253|128
Molds 25,337
panels |2964|4576| 426 | 124 | 290 | 5

Figure 4.11 Comparison of different methods for the same quality thresh-
olds. State-of-the-art commercial tools only support a greedy panel assign-
ment based on local fitting (top). Just one single application of our discrete
optimization greatly reduces cost without loss in surface quality (middle). The
full paneling algorithm interleaving discrete optimization with global contin-
uous registration produces a high quality paneling (bottom). This solution
contains 9o% single curved panels and a very small number of custom molds,
leading to a significantly reduced cost compared to greedy and local methods.
The zoom on the right shows that our algorithm supports arbitrary curve net-
work topology, including t-junctions. (Zaha Hadid Architects, Dongdaemun
Design Plaza and Park, Seoul.)

107

4 Paneling Architectural Freeform Surfaces

| [
- | 115,107 | 38 | 65 | - | molds | - |2005 133 | 21 |139 | -
442 4523|264 | 59 | 88 | - | panels | 414 |8569| 417 | 33 |1351| -

Figure 4.12 Paneling solutions for different curve networks on the Lilium
tower. Significant changes in the curve network layout result in different pan-
eling solutions. The left curve network, being closer to a conjugate network
[PLW* 071, is better suited for rationalization with planar and single curved

panels.

108

4.4 Evaluation and Discussion

reference surface

panelized surface

mold types

Figure 4.13 The kink angle constraints of our paneling algorithm ensure a
smooth approximation of the design surface. The paneling solution shown in
the middle and bottom row was produced using a kink angle threshold of 1°.
(Texxus www.texxus.com, Skipper Library Design Study.)

109

4 Paneling Architectural Freeform Surfaces

Extensibility. Our framework for paneling architectural freeform
surfaces takes important practical requirements into consideration. It
is extensible in various ways to account for further specific needs and
constraints.

In practice, the quality requirements on the paneling solution might
vary for different regions of the design. In Figures 4.14-1.17 we show
an extension that uses adaptive kink angle thresholds. Instead of a
single global threshold, a separate value is specitied for every curve
network sample point. In the examples shown, these local thresholds
are determined by a visibility function shown in Figure 4.14 that com-
putes the visibility for every point on the design surface, assuming the
surface is viewed from two different access paths. Figures 4.15-4.17
demonstrate how this adaptive quality control directs the use of ex-
pensive panels towards regions where they are needed most, leading
to an improved paneling quality at similar or lower costs compared
to globally specifying thresholds. The same technique can be used to
adaptively control the divergence or the deviation from the original
design surface.

The basic paneling algorithm described above assumes that the input
reference surface is smooth everywhere. Sharp crease lines, however,
are used in architectural freeform designs to highlight strong charac-
teristic features and to enhance the visual appeal of a design. To sup-
port sharp features the algorithm can easily be adapted such that kink
angle thresholds are not applied accross the curves describing sharp
features and the tangent continuity between two panels on opposite
sides of a sharp feature is not optimized. Figure 4.18 demonstrates
how this extension enables paneling solutions with sharp crease lines.

Further possible extensions include restrictions on mold reuse (restrict-
ing the use of the same mold to only parts of the surface determined
by the assembling schedule; restricting the number of panels to be
produced by the same mold) or explicit specification of panel types
allowed for selected segments. Currently our system supports five im-
portant panel types. Incorporating further types is not difficult, but
may require some thought to integrate them into a metric space for
fast panel-segment distance computations (see Appendix B). Since all
our architectural designs are segmented rather uniformly, our current

110

4.4 Evaluation and Discussion

cost model does not take panel sizes into account. Panel sizes could
be easily included, however, by specifying a cost per square meter for
each panel type. In Appendix A.2 we show how to extend the discrete
set cover optimization to this more general cost model and proof that
the logarithmic approximation ratio still holds.

Limitations. Although we achieve reasonable computation times
for our examples, very large models (> 50k segments) may only be
effectively handled by splitting them into several parts that are treated
separately. Even if splitting of a large model is not necessary, the per-
formance may not allow the user to fully exploit the potential of the
available control mechanisms (thresholds, allowed deviation from ref-
erence surface).

In our current problem formulation we expect an initial curve network
as part of the design. Certain materials like gypsum are suitable for
producing freeform surfaces without visible seams. Hence the aesthet-
ics of the curve network plays a minor role. While our framework
could be extended to allow stronger movement of the curve network,
the additional flexibility of freely optimizing over the curve layout is
currently not exploited in our algorithm.

S

Figure 4.14 Spatially adaptive kink angle weights computed based on vis-
ibility from path 1 (top row) and path 2 (bottom row). These weights are used
for paneling solutions as shown in Figures 4.15-4.17 (b) and (c).

111

4 Paneling Architectural Freeform Surfaces

S

@See”

@
—

<

)

@

<

S

SN

TSR

(c) Paneling solution with another set of spatially adaptive kink angle thresholds.

Figure 4.15 Effect of global vs adaptive kink angle constraints for the Skip-
per Library. Paneling solutions using a global kink angle specification (a) and
using adaptive kink angle thresholds (b, c¢) computed based on the extent of
visibility while moving along the indicated ground paths (Figure 4.14). Left:
reflection lines. Right: panel assignments. See Figures 4.16 and 4.17 for
statistics and different views.

112

4.4 Evaluation and Discussion

(c) Paneling solution with another set of spatially adaptive kink angle thresholds.

(a) global cost: 5946 (b) path 1 cost: 5810 (c) path 2 cost: 6265
molds| - [38|15| 2 |119|32 - 17318 |1 [169 22 - 1457 |5 [191/15
panels|102/622| 84 | 11 |349| 32 152/683/17 | 5 32122 97 1631/ 17 |13 427/ 15

divergence: 6mm
max angle: 3°

divergence: 6mm

max angle: 1°-6° (adaptive)

divergence: 6mm
max angle: 1°-6° (adaptive)

Figure 4.16 Global vs adaptive kink angle constraints for the Skipper Li-
brary and corresponding mold depot statistics (see also Figure 4.15).

113

4 Paneling Architectural Freeform Surfaces

(c) Paneling solution with another set of spatially adaptive kink angle thresholds.

Figure 4.17 Global vs spatially varying kink angle specifications on the
Skipper Library. Please refer to Figure 4.15 and 4.16 for details.

114

4.4 Evaluation and Discussion

molds| - |295
panels|425|882| 26 | 19 [182

total cost: 6800

divergence: 3mm
max angle: 1°

molds
panels| 605|860 25

total cost: 4010

divergence: 3mm
max angle: 3°

Figure 4.18 Paneling solutions for two different kink angle thresholds. The
characteristic sharp feature line of the Lissajous Tower is preserved in our pan-
eling solution. (Evolute www.evolute.at, Lissayous Tower Feasibility Study.)

115

4 Paneling Architectural Freeform Surfaces

Future Work. There are a number of desirable extensions to our
method that constitute challenging problems for future research. One
direction is to incorporate further important aspects into the optimiza-
tion, e.g., structural feasibility and efficiency of the underlyling sup-
port structure, especially if it is aligned with the network of panel
boundaries. This may be done using properly simplified mechanical
models, in extension of work by Whiting et al. [WODog], and should
lead to a new powerful tool for form-finding. The optimization could
also include energy performance values or try to optimally integrate
solar panels. These and related extensions towards the optimized use
of the building would be in the spirit of the Building Information Mod-
eling paradigm. To our knowledge the paneling problem is also of
interest to the ship-hull construction industry (e.g., Figure 4.19). We
plan to investigate this application in future work.

Figure 4.19 Potential for future work: paneling study of a ship hull. (Data
provided by Evolute, www.evolute.at)

116

c H A P T ER

Conclusion and Outlook

In this thesis we have investigated various aspects of constraint-based
surface processing for shape modeling and freeform architecture. For
modeling, we have introduced an optimization framework that allows
direct manipulation of derived surface properties. The user can mod-
ify lengths, areas and bending of the surface by drawing curves and
patches on the surface and manipulating their metric or curvature
properties. Curvature-Domain Shape Processing allows arbitrary cur-
vature values to be prescribed on a given surface and enables advanced
geometry processing techniques as simple operations in the curvature
domain. Local surface measures provide additional control on the de-
formation semantics. Our approach complements existing methods
for shape manipulation and leads to versatile surface deformations for
shape design. For architecture, we have cast the paneling of freeform
surfaces into a global optimization problem that takes into account
panel production cost, reuse of manufacturing molds, and various
constraints on surface quality and fabrication. The solution is based
on a combination of discrete and continuous optimization, as well as a
new inter-panel distance approximation for complexity reduction. We
have demonstrated the performance of our system on several complex
freeform designs by leading contemporary architects.

117

5 Conclusion and Outlook

In both application scenarios, surface modeling and freeform archi-
tecture, advanced geometric constraints lead to challenging optimiza-
tion problems with a complex solution space and a high number of
variables. In this thesis we introduce various concepts on how to ad-
dress such problems from specific implementation details to impor-
tant design decisions, novel approximation strategies, and algorithmic
schemes. These collected insights form a broad set of new tools for
constraint-based surface processing to utilize, build upon, and extend
in future research.

5.1 Impact

Although the research of this thesis is evaluated on specific application
scenarios, many concepts introduced in this thesis are of relevance in
the broader context of digital geometry processing. As indicated in
Chapter 3 our constraint-based modeling framework has potential ap-
plications in parameterization and could be extended to serve more
specialized purposes in industry, for example supporting surface pro-
cessing using milling machines or analyzing and controlling the defor-
mation behavior of stamped sheet metal. In Curvature-Domain Shape
Processing we push the complexity of geometry processing tasks to-
ward computation, thus reducing the burden on the user, who can ap-
ply simple and intuitive modifications and filtering operations in the
curvature domain to edit and design geometric models. Such a map-
ping of a geometric problem into a domain that is more accessible to
the user offers a new perspective on shape optimization and provides
a platform for further development in 3D geometry processing.

Our paneling algorithm described in Chapter 4 finds an approximation
of a general shape by a nearly smooth union of aesthetically arranged
panels of a limited number of types and is a significant extension of
the state-of-the-art in surface rationalization. Simultaneously decid-
ing on the number of different panel types required, while optimizing
their parameters, leads to an interesting and unusual mixture of dis-
crete and continuous global optimization with potential applications in
other domains. Finally, mold reuse by making relations explicit across

118

5.2 Outlook

different object parts and removing redundancies in the shape infor-
mation content, goes beyond symmetry detection and symmetrization
towards global shape understanding.

5.2 Outlook

In the context of constraint-based surface processing, challenging open
problems give rise to future research. We have discussed the extensi-
bility of our methods and suggested application-specific directions of
future work in the corresponding Chapters 3 and 4.

Efficiency. One of the major universal challenges of constraint-based
surface processing is efficiency. As we have seen in this thesis, imple-
menting advanced geometric constraints means solving complex non-
linear optimization problems for which it is hard to find efficient solu-
tions. Unfortunately, in many applications interactive performance is
the ultimate goal.

In modeling, the user wishes to manipulate a surface in realtime by
dragging the mouse or moving a slider to have optimal feedback and
control. Our constraint-based surface processing framework intro-
duced in Chapter 3 achieves interactive rates only for small problem
instances.

In freeform architecture efficiency is less critical, since the construction
of architectural freeform surfaces, as the main source of open geomet-
ric problems, is often decoupled from the design of such structures:
the architect (user) designs the surface that is then given to geometry
experts to compute, for example, a paneling. Design and construc-
tion, however, are rarely independent. Changing the design might
improve the rationalization quality or cost and in order to be able
to produce a surface with a given technology, significant changes in
the design might be required. This dependancy leads to an expen-
sive iterative production cycle where the architect adapts the design to
observe changes on the construction layout. Ideally, the construction
information would be directly integrated into the design process. In

119

5 Conclusion and Outlook

Architecture in the digital age: Design and Manufacturing [Kolos], Branko
Kolarevic writes:

"With the use of digital technologies, the design information is the construc-
tion information. (...) It is the digitally-based convergence of representation
and production processes that represents the most important opportunity for
a profound transformation of the profession...”

In freeform architecture the design information is not the construction
information. The main reason is the high complexity of the involved
optimization problems and the lack of efficient solutions. Even for
comparably simple problem instances, such as paneling with planar
quadrilateral panels, it is currently not possible to provide interactive
feedback on the construction information during surface design.

We propose three main directions to address efficiency in future work:

1. Implementation. A non-neglectable efficiency gain can and
should be obtained by careful implementation adapting to
new software and hardware technologies. For example, the
constraint-based surface processing frameworks presented in this
thesis have a high potential for parallelism. In Chapter 3 we have
demonstrated how multi-core and GPU parallelism can signifi-
cantly boost optimization time. Our paneling algorithm (Chap-
ter 4) makes use of parallelism as well, when building the sets for
the discrete optimization. Additionally, as shown in this thesis,
specific implementation details of the optimization solver (from
stopping conditions to energy reformulations and multiresolu-
tion techniques) can make a big difference.

2. Algorithms & Approximation. While a careful implementation
can significantly improve running times, algorithmic strategies
can make the difference between feasible and infeasible. For ex-
ample, the approximative distance space introduced for our pan-
eling algorithm (Chapter 4) brings down computing time from
months to hours. The key to successful performance improve-
ments for constraint-based surface processing thus lies in the
research of new algorithms and approximation techniques. A
promising strategy is to search for relations to known problems
in computer science and draw from decades of research on ef-

120

5.2 Outlook

ficient algorithms with guarantees on complexity or approxima-
tion quality (see for example the set-cover analogy established in
Chapter 4).

. Problem Formulation. Sometimes even the best algorithm and
the most efficient implementation will not be able to achieve the
desired computation time. For example, paneling architectural
freeform surfaces with double-curved panels, mold reuse, and
ten-thousands of panels, as described in Chapter 4, is not likely
to be solvable at interactive rates in the near future. We believe
that the solution lies in adapting the problem formulation: Di-
vide the problem into parts that should be solved at interactive
rates and less critical parts for which more computation time can
be afforded. This mandates a careful evaluation of what aspects
of the problem allow and most critically demand interactive per-
formance. In the application of constraint-based surface mod-
eling for example, an interesting direction of future research is
the investigation of fast preview techniques: Approximative tools
based on simplifications of the surface and simplifications of the
involved optimization terms can give the user the possibility to
interactively explore the modeling space. Once the user is satis-
fied with the edits she/he can actuate the full optimization, ob-
serve the result, and continue editing. Similar techniques can be
investigated to integrate construction information into freeform
surface design: Form finding is guided by interactive feedback
about the resulting paneling layout, without restricting the de-
signer’s expressiveness. This allows the architect to make more
informed design decisions and significantly improves the effi-
ciency of the production process. The main challenge of this
direction is to formulate the constraint-based surface processing
problem such that the user obtains as interactive and as accurate
control on the important aspects of the solution as possible.

Useability. The methods for constraint-based surface processing in-
vestigated in this thesis are directly motivated by applications in art
and industry. Our constraint-based shape deformation framework in-
troduced in Chapter 3 provides new tools for modelers and artists to
manipulate the geometry of a surface. The paneling algorithm pre-

121

5 Conclusion and Outlook

sented in Chapter 4 enables architects and architectural geometry con-
sultants to automatically compute and control freeform surface ratio-
nalization.

Applied research can get great inspiration from a careful evaluation
and understanding of the application specific needs and requirements
and of how people will eventually use the tools the research enables.
For our research on paneling architectural freeform surfaces we had
the pleasure of closely collaborating with our colleagues from the ge-
ometry consulting company Evolute. Through Evolute we had direct
access to invaluable knowledge about state-of-the-art working pro-
cesses and its deficiencies and to cutting edge architectural designs
from leading architects. This unique opportunity enabled well moti-
vated design decisions and made the research results stronger as they
could have ever been without these insights on the application domain
and direct feedback on the usability of our tools.

A comprehensive analysis of the application of the presented tools
in practice, however, is beyond the scope of this thesis and provides
potential for future work. Future research in constraint-based surface
processing would certainly benefit from scientific work

* presenting means and studies to measure and compare the effec-
tiveness of constraints for surface processing and

» providing insights on further application specific needs and open
challenges.

Interdisciplinary Problems. In practice, problems are rarely purely
geometric but often simultaneously involve a combination of problems
from other domains. For example, surface modeling is used in car and
airplane design, biology, medicine, and many other fields with their
own application-specific demands. Paneling architectural freeform
surfaces involves requirements from structural engineering, material
technology, and environment concerns such as lighting conditions. An
important future challenge is therefore the interdisciplinary collabo-
ration combining constraint-based surface processing with research in
other fields to develop comprehensive solutions for modeling, archi-
tecture, and beyond.

122

5.2 Outlook

New Constraints, New Applications. Constraint-based surface
processing is an unbounded research topic with a large number of fas-
cinating applications that cannot nearly be covered by one PhD thesis
alone. New constraints and new applications will pose new challenges
for future work and will continue to inspire exiting research in digital
geometry processing.

123

124

A PP ENDIX

Optimization

A.1 Derivatives of Geometric Properties
Evaluated on Triangle Meshes

Building the Jacobian matrix for the nonlinear least squares optimiza-
tion employed in our constraint-based modeling framework (Chap-
ter 3) requires the computation of partial derivatives of all involved
optimization terms with respect to the vertex positions. In this section
we derive analytic expressions for these derivatives.

A.1.1 Derivatives of Area, Length, and Angle

By applying the extended chain rule, the derivatives of all energies
introduced in Chapter 3 can be broken down to weighted sums of
derivatives of triangle areas, lengths of path/mesh edges, and angles
between two incident edges (or vectors in general). Since the extended
chain rule is a standard operator we concentrate on providing expres-
sions for these three basic components using the notation shown in
Figure A.1. The only derivative requiring special treatment is the

125

A Optimization

€12

Figure A.1 Notation used in the derivation of derivatives.

derivative of principal curvatures which we will discuss in detail in
Section A.1.2.

The gradient of the face area can be computed as

0 1
Ay = (R x ex), (A1)
where n is the normalized face normal. The gradients of the edge
lengths are
0 0

- — — @ _ — e A

v ||912H €12 v, ||912H €12 (A.2)
where €;, is the normalized edge. For an angle between two edges,
the derivatives can be computed as

a[x_612><1_1 8“_631><1_1

ova ' lenl? avs ' lex]? (A.3)
i(x—_elzXfl_e?ﬂXﬁ K
ovy ! | e12]|? |es1(|

A.1.2 Curvature Derivatives

The optimization of principal curvatures requires derivatives of per-
vertex principal curvatures with respect to the unknown vertex po-
sitions. We present the complete derivative formulas in this section.
In the following equations, v;. refers to the component ¢ of vertex i,

ce{xy,z}.

126

A.1 Derivatives of Geometric Properties Evaluated on Triangle Meshes

The principal curvatures x; and x, are eigenvalues of the curvature
tensor K defined in Equation 3.13. Umbilic points occur whenever the
curvature tensor field is isotropic, indicating that the underlying sur-
face locally approximates a sphere or plane. At such points, the princi-
pal curvatures are equal and their derivatives are undefined. However,
this problem falls into the class of composite nonsmooth optimization
[WES86] since, although the derivatives are discontinuous at umbilic
points, they can be approximated from information available at the
discontinuities. Following Kim and colleagues [KCHoz], we average
the derivative computation at nonsmooth points to achieve a viable
approximation. With these observations in place, we compute the cur-
vature derivatives according to three cases.

Case 1: The most common case occurs when all three eigenvalues
are distinct. In this situation, we have

d 0
—Ai=u [—K|u, A.
aVi,C J u] (E)vi,(;) u] (4)
where A; and u; are the j™ eigenvalue and normalized eigenvector,
respectively, of the curvature tensor K(v;) and Ay < A, < Az [HUY95].
The tensor derivative is given below in Equation A.7.

Case 2: A cylindric point occurs when the two smallest eigenvalues,
in an absolute sense, are nearly equal and distinct from the remaining
eigenvalue. The derivative of this remaining eigenvalue, which corre-
sponds to either x; or x», can be computed as described above. The
derivative of the other principal curvature can be computed using the
mean curvature H = 3(x1 + k7). Since H = jtrace(K), we have

0 1 0 0 0
H =~ (t1 + t + t33) , (A.5)

aVi,C 2 aVi,C aVi,C 8vi,c

where tj;, j € 1...3, are the diagonal entries of . The formula for
their partial derivatives is presented in Equation A.7.

Case 3: When x; = x, we have an umbilic point and the derivative
is not defined. However, a viable approximation to the derivative at

127

A Optimization

this point is given by averaging the derivatives that meet at the discon-
tinuity [KCHoz], which leads to
d d d

K1 = Ky = aTH, (A6)
ic

aVl',C aVi’C

where the rightmost term is defined in Equation A.5.

As a side remark, the principal curvatures and their derivatives can
also be estimated in terms of the mean and Gaussian curvatures. Un-
der the assumption that the third eigenvalue is zero, this approach
avoids eigenvalue decomposition and leads to simpler derivative ex-
pressions. However, we found this method to be less accurate near
umbilic points.

Tensor Derivatives. Equation A.4 requires the partial derivative of
the curvature tensor K with respect to the unknown vertices:

d 1 9 . K 9
aVi,cIC B Eavi,clc ~ |BP9vi, # (A.7)
where K =) B(e) [enB| ee’.
ecB
The derivative of K is given by
aVch Z[()|eﬁB|ee +
Be) (5 |eﬁB|)ééT+ (A8)
< .
5(6)\eﬂB\(avwee)}
where
J _ _+ 0 ee!
v © T o le||
1,C 1,C - (A9)
:< 0) 1 ee' le|l2
i /Tel? TePavc <"
The outer product derivative is given by
e.e; eye, ee,
ajiceeT:%ic e,e, ee, ee;|, (A.10)

e.e, e.e, ee,

128

A.1 Derivatives of Geometric Properties Evaluated on Triangle Meshes

which is straightforward to evaluate entrywise.

The remaining terms in Equations A.7, A.8, and A.g are more easily in-
terpreted geometrically as derivatives with respect to vertex v;, rather
than with respect to its individual components.

The area gradient for Equation A.7 is given by

\B\ B (A.11)
ov; f%; favl

where Ay is the face area and By is the fraction of Ay which is inside
B. Since B is a union of barycentric regions, By is always equal to
or 1. The derivative of the face area is derived in Equation A.1.

As shown by Bridson, Marino, and Fedkiw [BMFo3], the dihedral an-
gle gradients from Equation A.8 are given by

37 3’

2 ple) = el (A12)
0
2B(0) = el (A13)
0 __(Vl—V4>°€_ _(Vz—V4>-€_
vt T T T e e (A
%, __(Vl—V3>'€_ (Vz—Vg)'e_
e TN

Similar to Equation A.2, the edge length derivatives from Equa-
tions A.8 and A.g are

0
—‘612 N B| = —B.,&1n Svn lein N B| = B,€12
V2 A.16
9 9 , (A.16)
_ — _9 e —9
v, HeuH €12 v, Helz|| €12,

where B, , is the fraction of the edge which is inside B. Again because

of the barycentric regions, B,,, is either ; or 1.

129

A Optimization
A.2 Element-Weighted Set Cover

An important contribution of our algorithm for paneling architectural
freeform surfaces (Chapter 4) is the mapping of the constraint-based
optimization problem to a set cover problem. This section provides
a detailed analysis of the set cover problem and the algorithm we
introduced in Section 4.3.2, including a proof of the approximation
quality. As discussed in Chapter 4, the set cover algorithm can be ex-
tended to the more general setting where the panel cost is given as
a per-unit-area cost and has to be multiplied with the panel area to
obtain the total panel cost. In the following we reformulate the prob-
lem (Section A.2.1) and the algorithm (Section A.2.2) to support this
more general cost model. We describe the algorithm in slightly more
technical terms compared to Chapter 4 to enable a precise analysis
(Section A.2.3).

A.2.1 Problem

Given a set of elements S = {s3,...,s,} and a set of m subsets of S,
c* ={81,...,5u}, and a cost function c : * — IR, defined as

C(Sk) — Cl;et + Cle(lement Z (Z(Si, Sk)ASi (A.17)

s; €Sy

where ¢, and ¥, are constant, non-negative base and element costs
for set S, a : (S,0*) — {0,1} is an assignment function, that deter-
mines for every element s; in set Sy whether s; is assigned to Sy (value
1) or not (value 0). If s; ¢ S the function a(s;, S¢) is defined to be 0.
A, is a non-negative cost factor for every element s; by which the ele-
ment cost c* has to be multiplied. We therefore call ¥ the unit

element element
element cost, i.e., As. defines how many units element s; corresponds to.

Find a collection ¢ C ¢* and an assignment function 4, such that

1. every element s; is assigned to exactly one set Sy € ¢ that contains
it, that is Vs; : Zk:siGSkEcT a(si, Sk) =1,

2. and the total cost } .5 ¢, ¢(Sk) is minimized.

130

A.2 Element-Weighted Set Cover

Relation to Paneling. In the context of Paneling (Chapter 4), every
set S corresponds to a mold and denotes all segments s; € S that
can be fitted by this mold within given error tolerance thresholds. ¢*
contains the initial mold candidates. The result ¢ defines the final
mold depot, whereas the assignment function a uniquely determines
which mold produces which segment. The cost ¢k, corresponds to
the cost of mold k, the unit cost ¢¥,, . denotes the per-unit-area cost
of producing a panel with mold k, and the cost factor A, is the area
of segment s;. The full cost of producing segment s; with mold k is
therefore ¢, A,. This special cost structure is important and the
proof given in Section A.2.3 does not extend, for example, to the more
general case that the cost to produce a panel with a given mold is an
arbitrary non-constant cost function ¢, (s;). The special case where
the cost of a panel does not depend on the panel size (or all panels
have the same size) is included in the above formulation by setting
A;; = 1 for all segments. The formulation as a set cover problem
defines a paneling solution with minimal cost that meets the specified

error tolerance thresholds.

Relation to Classical Weighted Set Cover. From condition 1.
follows that ¢ covers all elements in S, that is, Ups,c,Sk = S. The
problem described above is therefore related to the classical weighted
set cover problem [Johy4], where the weights correspond to costs in
our case. While this problem is known to be NP-hard, a polynomial-
time approximation strategy can be used to find an approximate so-
lution whose cost is guaranteed to be within logn times the cost of
the optimal solution. It has been shown that logn is the best possible
approximation ratio of any polynomial-time algorithms [Feig8]. What
distinguishes our setting from the classical weighted set cover problem
is that each element is eventually assigned to only one set. Thus our
weights (costs) depend on which elements are assigned to which set.
If the element costs ¢, . are zero for all sets Sy, the problem above is
equal to the classical weighted set cover problem. Even if ¢f, . >0,
however, the same polynomial-time approximation algorithm can be
used to solve our problem (Section A.2.2) and the proof for the loga-
rithmic approximation ratio of the polynomial-time weighted set cover
algorithm directly translates to our more general setup (Section A.2.3).

131

A Optimization

A.2.2 Algorithm

We define the efficiency of a set Sy with respect to an assignment a as

the function y (5,50 A
. s; €Sy a\Si, Ok S;
(P(Sk/ €l> - C(Sk) 7 (A18)

where the cost of S; is computed according to the current assignment
function a. The efficiency determines how well a set covers elements
in & compared to the cost it requires to do so. During the execution of
the algorithm, let 0/ C ¢* be the collection of all sets Sy that have not
yet been chosen for ¢.

Our algorithm to determine the covering sets starts with an empty
collection ¢. Thus the collection ¢’ contains all the sets Sy € ¢* and
all elements s; are initially assigned to all sets Sx containing s;. We
then successively add the set S,, with highest efficiency to the current
solution ¢. The elements currently assigned to S,, are permanently
assigned to only S,,. The assignment function and consequently the
efficiency of all remaining sets are updated, and the algorithm is iter-
ated until all elements are covered.

c—Q, 0 «— 0"
VSk € o*,s; € Skl ﬂ(Si,Sk) =1

while Ug ¢, Sk # S while not all elements are covered
Sy argmaxg, co’ (S, a) candidate set with max. efficiency
oc—oU{S,} add to covering sets
o — o —{Su} remove from candidate sets

Vsi € S, Sk’ a(si, S¢) =0 update assignments

end

132

A.2 Element-Weighted Set Cover

A.2.3 Analysis

Theorem. The algorithm described in Section A.2.2 achieves an ap-
proximation ratio of

ALG Aot
OPT = In (Amm> +1 (A.19)

to the optimal solution OPT of the problem described in Section A.2.1,

where
n

Aot = ZASi (A.ZO)
i=1

is the total number of units and

A,in = min As. (A.21)
s;€S !

is the minimum number of units for the elements in S.

Proof. The per unit cost of a set is the average cost per unit for all
elements assigned to the set and can be computed as the inverse of
the set’s efficiency ¢(Sk, a). Thus for each element s; assigned to Sy we
define the per unit cost c(s;) = 1/¢(Sk,a). Note that Y s c(s;) A, =
ALG, that is, the total cost of the algorithm.

Let us sort the elements in the order that they are covered (perma-
nently assigned) by the algorithm, breaking ties arbitrarily. At the
time that the i" element (call it s;) gets covered (directly before), the
total number of uncovered units is at least } /i ; A.. This holds by con-
struction of the ordering of the elements. The cost OPT;,; of solving
the element-weighted set cover for the subproblem with elements that
are currently not covered and the current candidate sets ¢’ is at most
OPT. This holds since one solution for the subproblem can easily be
obtained by taking the optimal solution for the whole problem and
removing all elements that were already covered. Removing elements
can only decrease the cost. Therefore, the "per unit cost" of the sub-

problem is at most

OPTs,,; OPT
< = p
Asub Zj:i As]-

(A.22)

133

A Optimization

where A;,;, denotes the total number of units present in the subprob-
lem. Thus, in the final solution of the subproblem there must be at
least one set Sy with "per unit cost" < OPT/ 27:1- As].. At the time the
element s; gets covered, this set Sy can only have a lower or equal "per
unit cost". This holds, because the "per unit cost" of a set

1 C(Sk)

- A.2
¢<Sk/ a) Zsz‘GSk Q(Si, Sk)Asi (3)
_ C];Et + Cleflement Zsieé’k a<5i/ Sk)Asi (A 24)
Ysies, 4(si, Sk) As, '
_ Clscet + Ck (A 25)
ZSiESk LZ(Si, Sk>Asi element .

can only decrease, if more elements are assigned to the set. Since the
set we choose by the Algorithm in Section A.2.2 when we cover s; is
the set with the highest efficiency, that is, the lowest "per unit cost", it
holds

c (Si) < OPT

— A.26
S (A.26)

Over the execution of the algorithm the value of i goes from 1 to n.
Thus, the total cost is at most
= OPT

LA,
ALG < = A, =OPT) ——% A2

Figure A.2 shows a graphical interpretation of Equation A.27. The
element cost factors (unit counts) A are mapped to intervals on the
x-axis in order of descending indices i. The i x-axis value counted
from the right therefore corresponds to Z]’}:i AS].. The corresponding
y-axis value is its inverse 1/ 2721' Asj. The sum

n Asi
LY A,

(A.28)

therefore denotes the area of the vertical bars over each interval A,
(see Figure A.2). The area of the bar of the left-most interval is always

As,

= =1 A2
Z}’l:n A5] (9)

134

A.2 Element-Weighted Set Cover

1/ Y0, Ay
o

|
At A Lot a, Toa !

n Sp—1

Figure A.2 Graphical interpretation of Equation A.27 (discussion see text).

Equation A.27 can thus be continued as

T As
ALG < OPT 1 A.30
< ;Z}?—i a (A.30)
= OPT 1+nf A (A.31)
i=1 ZJtl:i ASJ‘ 7

Atot 1
< OPT (1 + / —dx) (A.32)

Anﬁn X

. Atot
= OPT (1 +In) (A.33)

Amin

where the step from Equation A.31 to Equation A.32 makes use of
the fact that the former is a lower Riemann sum approximation of the
latter (see Figure A.2). q.e.d.

Implication for the Paneling Algorithm. In the context of paneling
(Chapter 4) this result means, that the approximation quality of the set
cover algorithm depends on the ratio between the total surface area
At and the area of the smallest segment A,,;,. If the panel cost does
not depend on the panel size, or all panels have the same size, the
approximation ratio depends on the number of segments, since in that
case Aot/ Apmin = 1.

135

136

A PP ENDIX

Metric Space for Approximate
Panel-Segment Distances

In our paneling algorithm (see Chapter 4) we efficiently estimate regis-
tration errors in a 6D metric space to avoid more than 95% of the costly
nonlinear mold-segment alignments for the discrete optimization step
of Section 4.3.2. We define a mapping of planes, paraboloids, and cu-
bic patches into this space and show how cylinders and tori can be
approximated with cubics. Representing segments by their best fitting
cubic polynomial then allows calculating upper bounds on the reg-
istration error through simple 6D Euclidean distances computations.
Figure B.1 evaluates the accuracy of this approximate registration er-
ror computation.

Distances Between Cubic Polynomials. We represent a cubic poly-
nomial patch in the principal frame of the patch center as

Pi(x,y) = a;x> + biyz +cix® 4 dl-xzy + el-xy2 + ﬂy3.

Our goal is to find potential mold candidates for a given segment.
We thus consider the domain D = [—L, L]?, where L is half the seg-
ment side length computed on the initial curve network. Since these

137

B Metric Space for Approximate Panel-Segment Distances

approximate distances are only used for pruning, it is sufficient to as-
sume a quadratic shape even for non-quadratic segments. We define
the L,-distance E;; = E(P;, P;) between two polynomials P; and P; by
optimizing over the relative shift in z-direction

Ej = min //(ax2 + by? + cx® + dx*y + exy® + fy° + 7)%dxdy,
D

where a := a; — a;, etc. Since the integral can be factored into the form
At? + 2BT + C, we obtain E;j = C — B2/ A for the optimal value of
T = —B/A . Substituting d =d;+ fi and &; = c; + ¢; and reordering
terms yields

4L% , 4L*
Eij =4L*(—a°

L6, 8L, 8LS
+ —
45 45

L6
2 72 ! 2
b 15d 158 105C 105f)

By setting E = /E/(4L?), our distance measure between cubic patches
corresponds to the canonical Euclidean distance where every cubic is
represented as a point in the 6D Euclidean space as

T
p_ (22 2L L% . L% VBLY. \/§L3f'
1 3\/5 113\/5 l,\/ﬁ Z,\/ﬁ [/—105 124 /—105 1 .

Since we are interested in the shape of the cubic rather than its specific
orientation, we consider for every cubic P; all four right handed coordi-
nate transformations and another four with a flipped normal direction
z:

P = {Pi(x,y), Pi(—y, x),Pi(—x,—y), Pi(y, —x),
—Pi(x,—y), —Pi(y,x), —Pi(—x,y), —Pi(—y, —x)}

which correspond to eight points in the derived Euclidean space. We
finally define our approximative distance measure as

d(Pi, Pj) = min E(Pi, le)’
P].’er*

which defines a metric on the space of cubic polynomials.

138

1 kinkanglesin® 1 divergence in mm
60
60 |
40
40 ¢
WMWWWWW ‘
20| | 20t e
MMW‘WW WM’WWW
1[0 e, - 10 ¢ s
T segments segments
2000 4000 6000] 2000 4000 6000]

Figure B.1 Maximal kink angle and divergence averaged by fitting 400
randomly selected molds to all the 7265 segments of the National Head Quar-
ters design (see Chapter 4). The values are sorted by our approximate panel-
segment distances to demonstrate the strong correlation of the approximative
and the exact fitting errors.

Cylinder and Torus. Planes and paraboloids can be directly de-
scribed as cubic polynomials with zero higher order coefficients. For
cylinders and tori, we use the Taylor expansion expressed in the co-
ordinate system of the principal frame at a center point on the mold
as an approximation. For cylinders with radius R the only nonzero
coefficient is thus a; = 1/(2R).

Torus molds are defined by a merid-

ian radius R;, a parallel radius R, and Ry
angle ¢ that determines where on the

meridian the mold center lies. Since

this representation has three parame-

ters, we use the third-order Taylor ex-

pansion

1,1 , cosoc , Rosinco

- — —(— 2
T3(x/y) T (Rlx + R y + RZRl xy)I (BI)

where R := Ry + Rj coso, and —1/R; and —(cos) /R are the principal
curvatures at the mold center.

139

140

Bibliography

[ACSD"03] Pierre Alliez, David Cohen-Steiner, Olivier Devillers,

[AKM*06]

[AMo3]

[ASo6]

[BCGBo8]

[BGo8]

[Bjog6]

Bruno Lévy, and Mathieu Desbrun. Anisotropic polyg-
onal remeshing. ACM Transactions on Graphics (Proceedings
of SIGGRAPH), 22(3), 2003.

M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo,
and A. Tal. Mesh segmentation — a comparative study. In
IEEE International Conference on Shape Modeling and Appli-
cations, 2006.

Sunil Arya and David M. Mount. Approximate nearest
neighbor queries in fixed dimensions. In SODA, pages
271—280, 1993.

Alexis Angelidis and Karan Singh. Space deformations
and their application to shape modeling. In ACM SIG-
GRAPH Course Notes, 2006.

Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. Con-
formal flattening by curvature prescription and metric
scaling. Computer Graphics Forum (Proceedings of Eurograph-
ics), 27(2), 2008.

Nathan Bell and Michael Garland. Efficient sparse matrix-
vector multiplication on CUDA. NVIDIA Technical
Report NVR-2008-004, NVIDIA Corporation, December
2008.

A. Bjorck. Numerical Methods for Least Squares Problems.
SIAM, 1996.

141

Bibliography

[BKo4]

[BMFo3]

[Botos]

[BPGKo6]

[BPK*08]

[BSos]

[BSo8]

[BSo9]

[CAAO09]

[CADo4]

142

Mario Botsch and Leif Kobbelt. An intuitive framework
for real-time freeform modeling. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 23(3), 2004.

R. Bridson, S. Marino, and R. Fedkiw. Simulation of cloth-
ing with folds and wrinkles. In Symposium on Computer
Animation, 2003.

Mario Botsch. High Quality Surface Generation and Efficient
Multiresolution Editing Based on Triangle Meshes. PhD thesis,
RWTH Aachen, 2005.

Mario Botsch, Mark Pauly, Markus Gross, and Leif
Kobbelt. Primo: coupled prisms for intuitive surface mod-
eling. In Symposium on Geometry Processing, 2006.

Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez,
Bruno Lévy, Stephan Bischoff, and Christian Rossl. Ge-
ometric modeling based on polygonal meshes. In Euro-
graphics Course Notes, 2008.

Alexander 1. Bobenko and Peter Schroder. Discrete will-
more flow. In Symposium on Geometry Processing, 2005.

Mario Botsch and Olga Sorkine. On linear variational sur-
face deformation methods. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(1), 2008.

Alexander Bobenko and Yuri Suris. Discrete differential ge-
ometry: Integrable Structure. Graduate Studies in Math.
AMS, 2009.

Robert Carroll, Maneesh Agrawala, and Aseem Agarwala.
Optimizing content-preserving projections for wide-angle
images. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 2009.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun.
Variational shape approximation. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 23(3):905-914, 2004.

Bibliography

[CDHRo9] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam.

[CPos]

[CS92]

[CSMos3]

[Dav]

[dC76]

[dCo2]

[DMKo3]

[DMSBg9]

[DS87]

[EDS"10]

Algorithm 887: Cholmod, supernodal sparse cholesky fac-
torization and update/downdate. ACM Trans. Math. Soft-

ware, 35(3), 2009.

F. Cazals and M. Pouget. Estimating differential quantities
using polynomial fitting of osculating jets. Comput. Aided
Geom. Des., 22(2), 2005.

Xin Chen and Francis Schmitt. Intrinsic surface proper-
ties from surface triangulation. In European Conference on
Computer Vision, pages 739743, 1992.

David Cohen-Steiner and Jean-Marie Morvan. Restricted
delaunay triangulations and normal cycle. In Symposium
on Computational Geometry, 2003.

T. A. Davis. Algorithm 8xx: Suitesparseqr, a multifrontal

multithreaded sparse qr factorization package. submitted
to ACM Trans. Math. Software.

M. P. do Carmo. Differential Geometry of Curves and Sur-
faces. Prentice Hall, 1976.

M. P. do Carmo. Riemannian Geometry. Birkhduser Boston,
1992.
P. Degener, J. Meseth, and R. Klein. An adaptable sur-

face parameterization method. In Proceedings of 12th Int.
Meshing Roundtable, 2003.

Mathieu Desbrun, Mark Meyer, Peter Schroder, and
Alan H. Barr. Implicit fairing of irregular meshes us-
ing diffusion and curvature flow. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH), pages 317-324, 1999.

J. E. Dennis and Robert B. Schnabel. Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. Soci-
ety for Industrial Mathematics, 1987.

Michael FEigensatz, Mario Deuss, Alexander Schiftner,
Martin Kilian, Niloy J. Mitra, Helmut Pottmann, and Mark

143

Bibliography

[EKST10]

[EPo9]

[EPT07]

[ESPo8]

[FDCOo3]

[Feig8]

[FHos]

[Fleoo]
[FLHCO10]

[GGRZo6]

144

Pauly. Case studies in cost-optimized paneling of architec-
tural freeform surfaces. In Advances in Architectural Geom-
etry, 2010.

Michael Eigensatz, Martin Kilian, Alexander Schiftner,
Niloy Mitra, Helmut Pottmann, and Mark Pauly. Pan-
eling architectural freeform surfaces. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 29(3), 2010.

Michael Eigensatz and Mark Pauly. Positional, metric, and
curvature control for constraint-based surface deforma-
tion. Computer Graphics Forum (Proceedings of Eurographics),
28(2), 2009.

I. Eckstein, J.-P. Pons, Y. Tong, C.-C.]J. Kuo, and M. Des-
brun. Generalized surface flows for mesh processing. In
Symposium on Geometry Processing, pages 183-192, 2007.

Michael Eigensatz, Robert W. Sumner, and Mark Pauly.
Curvature-domain shape processing. Computer Graphics
Forum (Proceedings of Eurographics), 277(2), 2008.

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bi-
lateral mesh denoising. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH), 22(3):950-953, 2003.

Uriel Feige. A threshold of In n for approximating set
cover. JACM, 45(4):634-652, 1998.

Michael S. Floater and Kai Hormann. Surface parameter-
ization: a tutorial and survey. In In Advances in Multireso-
lution for Geometric Modelling, pages 157-186, 2005.

R. Fletcher. Practical Methods of Optimization. Wiley, 2000.

Chi-Wing Fu, Chi-Fu Lai, Ying He, and Daniel Cohen-
Or. K-set tilable surfaces. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 29(3), 2010.

Eitan Grinspun, Yotam Gingold, Jason Reisman, and De-
nis Zorin. Computing discrete shape operators on gen-

[GHDSo3]

[Glo4]

[GL81]

[GL96]

[GMW89]

[GPFog]

[GSC*o2]

[GZo8]

[HGoo]

[HLSo7]

[Horo1]

Bibliography

eral meshes. Computer Graphics Forum (Proceedings of Euro-
graphics), 25(3), 2006.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and
Peter Schroder. Discrete shells. In Proceedings of SCA, 2003.

Jack Goldfeather and Victoria Interrante. A novel cubic-
order algorithm for approximating principal direction
vectors. ACM Transactions on Graphics, 23(1):45-63, 2004.

A. George and J. W. H. Liu. Computer solution of large sparse
positive definite matrices. Prentice Hall, 1981.

G. Golub and C.E. Van Loan. Matrix Computations. John
Hopkins Press, 3 edition, 1996.

P. E. Gill, W. Murray, , and M. Wright. Practical Optimiza-
tion. Academic Press, London, 1989.

Aleksey Golovinskiy, Joshua Podolak, and Thomas
Funkhouser. Symmetry-aware mesh processing. Mathe-
matics of Surfaces, 2009.

James Glymph, Dennis Shelden, Cristiano Ceccato, Judith
Mussel, and Hans Schober. A parametric strategy for
freeform glass structures using quadrilateral planar facets.
In Acadia, pages 303—-321, 2002.

Yotam Gingold and Denis Zorin. Shading-based surface
editing. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 27(3), 2008.

K. Hormann and G. Greiner. MIPS: An efficient global
parametrization method. In Curve and Surface Design:
Saint-Malo 1999. Vanderbilt University Press, 2000.

K. Hormann, B. Levy, and A. Sheffer. Mesh parameteri-
zation: theory and practice. In ACM SIGGRAPH Course
Notes, 2007.

K. Hormann. Theory and Applications of Parameterizing Tri-
angulations. PhD thesis, Department of Computer Science,
University of Erlangen, 2001.

145

Bibliography

[HPo4]

[HSo2]

[HUY95]

[IMT99]

[JKSos]

[Joh74]

[KCHoz]

[KCVSo8]

[Kolos]

[KSNSo7]

146

Klaus Hildebrandt and Konrad Polthier. Anisotropic fil-
tering of non-linear surface features. Computer Graphics
Forum, 23(3), 2004.

Eyal Hameiri and Ilan Shimshoni. Estimating the princi-
pal curvatures and the darboux frame from real 3d range
data. Symposium on 3D Data Processing Visualization and
Transmission, page 258, 2002.

J.-B. Hiriart-Urruty and D. Ye. Sensitivity analysis of
all eigenvalues of a symmetric matrix. Numer. Math.,

70(1):45-72, 1995.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
Teddy: A sketching interface for 3d freeform design. In
ACM Transactions on Graphics (Proceedings of SIGGRAPH),

1999.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts:
Quasi-developable mesh segmentation. Computer Graphics
Forum (Proc. Eurographics), 24(3):581-590, 2005.

David S. Johnson. Approximation algorithms for combi-
natorial problems. Journal of Computer a. System Sciences,

9:256, 1974.

M. S. Kim, D. H. Choi, and Y. Hwang. Composite non-
smooth optimization using approximate generalized gra-
dient vectors. |. Optim. Theory Appl., 112(1):145-165, 2002.

Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-
Peter Seidel. Interactive multi-resolution modeling on ar-
bitrary meshes. In ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH), 1998.

Branko Kolarevic. Architecture in the digital age: design and
manufacturing. Taylor & Francis, 2003.

E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and
K. Singh. Robust statistical estimation of curvature on
discretized surfaces. In Symposium on Geometry Processing,
pages 13—22, 2007.

[LBSos5]

[LLCOo08]

[LPWT06]

[LSCO*04]

[LSLCOo5]

[LSSKog]

[Marog]

[MCWo1]

[MDSBoz2]

[MGPo6]

Bibliography

Torsten Langer, Alexander G. Belyaev, and Hans-Peter Sei-
del. Asymptotic analysis of discrete normals and curva-
tures of polylines. In SCCG ’o05: Proceedings of the 21st
spring conference on Computer graphics, pages 229—232, 2005.

Yaron Lipman, David Levin, and Daniel Cohen-Or. Green
coordinates. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 27(3):1-10, 2008.

Yang Liu, Helmut Pottmann, Johannes Wallner, Y.-L Yang,
and Wenping Wang. Geometric modeling with conical
meshes and developable surfaces. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 25(3):681-689, 2006.

Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David
Levin, Christian Rossl, and Hans-Peter Seidel. Differential
coordinates for interactive mesh editing. In Proceedings of
SMI, 2004.

Yaron Lipman, Olga Sorkine, David Levin, and Daniel
Cohen-Oir. Linear rotation-invariant coordinates for
meshes. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 24(3), 2005.

Bao Li, Ruwen Schnabel, Jin Shiyao, and Reinhard Klein.
Variational surface approximation and model selection.
Proceedings of Pacific Graphics, 28(7):1985-1994, 2009.

Stephen Marsland. Machine Learning: An Algorithmic Per-
spective. Chapman & Hall, 2009.

K.T. Miura, Fuhua Cheng, and Lazhu Wang. Fine tuning:
curve and surface deformation by scaling derivatives. In
Proceedings of Pacific Graphics, 2001.

M. Meyer, M. Desbrun, P. Schroeder, and A. Barr. Dis-
crete differential-geometry operators for triangulated 2-
manifolds. VisMath., 2002.

Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial
and approximate symmetry detection for 3D geometry.

147

Bibliography

[MGPo7]

[MHILoz]

[MNTo4]

[MS92]

[Nieg9]

[NISAo7]

[Nvios]
[OBSo2]

[PFTo4]

[PHKo08]

148

ACM Transactions on Graphics (Proceedings of SIGGRAPH),
25(3):560-568, 2006.

Niloy J. Mitra, Leonidas]J. Guibas, and Mark Pauly. Sym-
metrization. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 26(3):63, 2007.

Kwan-Liu Ma, Aaron Hertzmann, Victoria Interrante, and
Eric B. Lum. Recent advances in non-photorealistic ren-
dering for art and visualization. ACM SIGGRAPH Course
Notes, 2002.

K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for
non-linear least squares problems. Technical report, Tech-
nical University of Denmark, 2004.

Henry P. Moreton and Carlo H. Séquin. Functional opti-
mization for fair surface design. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 1992.

H. Nielsen. Damping parameter in marquardt’s method.
Technical report, Informatics and Mathematical Mod-
elling, Technical University of Denmark, 1999.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. FiberMesh: Designing freeform surfaces with 3D
curves. ACM Transactions on Grapphics (Proceedings of SIG-
GRAPH), 26(3), 2007.

Nvidia. Nvidia - cuda programming guide, 2005.

Y. Othake, A. Belyaev, and H-P. Seidel. Mesh smoothing
by adaptive and anisotropic gaussian filter. Vision, Model-
ing, and Visualization, 2002.

H.B. Nielsen PE. Frandsen, K. Jonasson and O. Tingleff.
Unconstrained optimization. Technical report, Technical
University of Denmark, 2004.

Helmut Pottmann, Michael Hofer, and Axel Kilian, edi-
tors. Advances in Architectural Geometry. Vienna, 2008.

[PLW*07]

[PMW+08]

[PP93]

[PSo7]

[PSB*08]

[PSGT06]

[PWo1]

[Ruso4]

[Rusob]

Bibliography

Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander
Bobenko, and Wenping Wang. Geometry of multi-layer
freeform structures for architecture. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 26(3):65, 2007.

Mark Pauly, Niloy]J. Mitra, Johannes Wallner, Helmut
Pottman, and Leonidas J. Guibas. Discovering structural
regularity in 3D geometry. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 27(3):43, 2008.

U. Pinkall and K. Polthier. Computing discrete minimal
surfaces and their conjugates. Experimental Mathematics,

2(1), 1993.

J. Pushkar and C. Sequin. Energy minimizers for
curvature-based surface functionals. Computer-Aided De-
sign and Applications, 2007.

Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz
Schmiedhofer, Wenping Wang, Niccolo Baldassini, and Jo-
hannes Wallner. Freeform surfaces from single curved
panels. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 27(3):76, 2008.

Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szy-
mon Rusinkiewicz, and Thomas Funkhouser. A planar-
reflective symmetry transform for 3D shapes. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH), 25(3):549—
559, 2006.

Helmut Pottmann and Johannes Wallner. Computational
Line Geometry. Springer-Verlag New York, Inc., 2001.

Szymon Rusinkiewicz. Estimating curvatures and their
derivatives on triangle meshes. In Symposium on 3D Data
Processing, Visualization, and Transmission, pages 486—493,
2004.

Andrzej Ruszczynski. Nonlinear Optimization. Princeton
University Press, 2006.

149

Bibliography

[SCOL"04]

[SF98]

[SGo3]

[SGo4]

[Shao6]

[Shao8]

[Sheo2]

[SPRo6]

[SS10]

[SSPo8]

[Taugsa]

150

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl,
and H.-P. Seidel. Laplacian surface editing. In Symposium
on Geometry Processing, 2004.

Karan Singh and Eugene Fiume. Wires: a geometric de-
formation technique. In ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH), 1998.

V. Surazhsjy and C. Gotsman. Explicit surface remeshing.
In Symposium on Geometry Processing, pages 20-30, 2003.

Olaf Schenk and Klaus Gartner. Solving unsymmetric
sparse systems of linear equations with pardiso. Future
Gener. Comput. Syst., 20(3):475—487, 2004.

Ariel Shamir. Segmentation and shape extraction of 3d
boundary meshes. Eurographics State-of-the-Art Report,
2006.

Ariel Shamir. A survey on mesh segmentation techniques.
In Computer Graphics Forum, volume 27, pages 1539-1556,
2008.

Dennis Shelden. Digital surface representation and the con-
structibility of Gehry’s architecture. PhD thesis, M.1.T., 2002.

Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh param-
eterization methods and their applications. Found. Trends.
Comput. Graph. Vis., 2(2):105-171, 2006.

M. Singh and S. Schaefer. Triangle surfaces with discrete
equivalence classes. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH), 29(3), 2010.

B. Springborn, P. Schroder, and U. Pinkall. Conformal
equivalence of triangle meshes. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 277(3), 2008.

G. Taubin. Estimating the tensor of curvature of a surface
from a polyhedral approximation. In International Confer-
ence on Computer Vision, page 902, 1995.

[Taugsb]

[TGRZo7]

[TMo8]

[TPBFS7]

[VMoz2]

[Weiog]

[WE86]

[WKos]

[WODog]

[WWo2]

Bibliography

Gabriel Taubin. A signal processing approach to fair sur-
face design. In ACM Transactions on Graphics (Proceedings
of SIGGRAPH), pages 351—358, 1995.

E. Tosun, Y. I. Gingold, J. Reisman, and D. Zorin. Shape
optimization using reflection lines. In Symposium on Ge-
ometry Processing, 2007.

C. Tomasi and R. Manduchi. Bilateral filtering for gray
and color images. In International Conference on Computer
Vision, page 839, 1998.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. Elastically deformable models. In ACM Trans-
actions on Graphics (Proceedings of SSIGGRAPH), pages 205—

214, 1987.

Tamas Varady and Ralph Martin. Reverse engineering. In
Handbook of CAGD, pages 651-681, 2002.

Rolf Weilenmann. Interactive constraint-based modeling.
Master’s thesis, ETH Zurich, 2009. Supervised by Michael
Eigensatz and Mark Pauly.

R S Womersley and R Fletcher. An algorithm for compos-
ite nonsmooth optimization problems.]. Optim. Theory

Appl., 48(3):493-523, 1986.

Jianhua Wu and Leif Kobbelt. Structure recovery via hy-
brid variational surface approximation. Computer Graphics
Forum (Proceedings of Eurographics), 24(3):277-284, 2005.

Emily Whiting, John Ochsendorf, and Frédo Durand. Pro-
cedural modeling of structurally-sound masonry build-
ings. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 28(5):112, 2009.

William Welch and Andrew Witkin. Variational surface
modeling. In ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 1992.

151

Bibliography

[YLWo6]

[YZXT04]

[25597]

152

Dong-Ming Yan, Yang Liu, and Wenping Wang. Quadric
surface extraction by variational shape approximation. In
GMP, pages 73-86, 2006.

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao,
Baining Guo, and Heung-Yeung Shum. Mesh editing with
poisson-based gradient field manipulation. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH), 23(3), 2004.

Denis Zorin, Peter Schroder, and Wim Sweldens. Interac-
tive multiresolution mesh editing. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 1997.

Curriculum Vitae

MSc CS Michael Eigensatz

Personal Data

16 December 1979 Born in Lucerne, Switzerland
Nationality Swiss

Education

2 July 2010 Ph.D. defense.

Mai 2006 — Jun. 2010 Research assistant and Ph.D. student at the Applied Geome-
try Group of ETH Zurich, Switzerland, under the supervision
of Prof. Mark Pauly.

April 2006 Degree Master of Science ETH in Computer Science.
Oct. 2000 — Apr. 2006 Masters Studies of Computer Science, Major in Computa-
tional Sciences, Minor in Artificial Intelligence.

March 2000 Swiss Federal Matura. Type C: specialization in sciences.
1998 — 2000 Rudolf Steiner School Schloss Glarisegg, Switzerland
1986 — 1998 Rudolf Steiner School Baar, Switzerland

Scientific Publications

Michael Eigensatz, Mario Deuss, Alexander Schiftner, Martin Kilian, Niloy Mitra,
Helmut Pottmann, and Mark Pauly. Case Studies in Cost-Optimized Paneling of
Architectural Freeform Surfaces. Advances in Architectural Geometry, 2010.

Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy Mitra, Helmut Pott-
mann, and Mark Pauly. Paneling Architectural Freeform Surfaces. ACM Transactions
on Graphics (Proceedings of SIGGRAPH), 29(3), 2010.

Michael Eigensatz and Mark Pauly. Positional, Metric, and Curvature Control for
Constraint-Based Surface Deformation. Computer Graphics Forum (Proceedings of EU-
ROGRAPHICS), 28(2), 2009.

Michael Eigensatz, Robert W. Sumner, and Mark Pauly. Curvature-Domain Shape
Processing. Computer Graphics Forum (Proceedings of EUROGRAPHICS), 27(2), 2008.

Michael Eigensatz, Joachim Giesen, and Madhusudan Manjunath. The Solution Path
of the Slab Support Vector Machine. Canadian Conf. on Computational Geometry, 2008.

153

154

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Fundamentals
	Surface Geometry in IR3
	Curves and Surfaces
	Tangents and Normals
	Metric
	Metric Deformation
	Curvature
	Fairness

	Least Squares Optimization
	The Gauss-Newton Algorithm
	The Levenberg-Marquardt Algorithm
	Implementation Insights

	Constraint-Based Modeling
	Introduction
	Related Work

	Problem Formulation
	Modeling Constraints
	Deformation Control

	Discretization
	Surface Energies
	Modeling Constraints
	Discussion

	Optimization
	Constraint-Based Shape Editing
	Curvature-Domain Shape Processing
	Discussion

	Paneling Architectural Freeform Surfaces
	Introduction
	Contributions
	Related Work

	Problem Specification
	Terminology
	The Paneling Problem

	Paneling Algorithm
	Continuous Optimization Step
	Discrete Optimization Step
	Interleaved Iteration

	Evaluation and Discussion

	Conclusion and Outlook
	Impact
	Outlook

	Optimization
	Derivatives of Geometric Properties Evaluated on Triangle Meshes
	Derivatives of Area, Length, and Angle
	Curvature Derivatives

	Element-Weighted Set Cover
	Problem
	Algorithm
	Analysis

	Metric Space for Approximate Panel-Segment Distances
	Bibliography
	Curriculum Vitae

