Workshop on Virtual Reality Interaction and Physical Simulation VRIPHY'S (2009)
H. Prautzsch, A. Schmitt, J. Bender, M. Teschner (Editors)

GPU Accelerated Tandem Traversal of Blocked Bounding
Volume Hierarchy Coallision Detection for Multibody
Dynamics

J. Damkjar * and K. Erleben®

1Department of Computer Science, University of Copenhagen, Denmark

Abstract

The performance bottleneck of physics based animation is often the collision detection. It is well known by prac-
titioners that the collision detection may consume more than half of the simulation time. In this work, we will
introduce a novel approach for collision detection using bounding volume hierarchies. Our approach makes it
possible to perform non-convex object versus non-convex object collision on the GPU, using tandem traversals
of bounding volume hierarchies. Prior work only supports single traversals on GPUs. We introduce a blocked
hierarchy data structure, using imaginary nodes and a simultaneous descend in the tandem traversal. The data
structure design and traversal are highly specialized for exploiting the parallel threads in the NVIDIA GPUs.
As proof-of-concept we demonstrate a GPU implementation for a multibody dynamics simulation, showing an
approximate speedup factor of up to 8 compared to a CPU implementation.

Categories and Subject Descriptors (according to ACM CCS):
modeling—Computer Graphics [1.3.7]: Animation—

Computer Graphics [1.3.5]: Physically based

Keywords: Physics based Animation, Collision Detection, Computer Animation, Bounding Volume Hierarchies,
Graphics Hardware

1. Hierarchiesfor GPUs

Collision detection is an important part of physics based an-
imation and a large research area. Two introductions and
surveys to collision detection are [Eri05, vdBO03]. It is a
well known fact that collision detection is a major perfor-
mance bottleneck in physics based animation and simula-
tion [HTGO04,RZ08]. This has motivated our work. We focus
on general exact methods that can be used for non-convex
objects and triangle soups. Thus, approximations and non
world-space methods such as [GRLMO03, KP03, JH08] are
not applicable.

(a) Stack (c) Rock slide

(b) Pile

‘ h 4 b 3
A b \ ¥ 3
N ;o e B

(d) Close up of (e) Close up of pile (f) Close up of rock

i i isi i tack lid
A specific method for doing exact collision detection stac slide

between two general objects is bounding volume hierar-
chies [Eri05]. Here objects are subdivided into increasingly
smaller sub-objects in a hierarchic fashion, until single trian-
gles are reached. In this paper, we will approach the perfor-
mance bottleneck, by utilizing modern GPU hardware for
handling the collision detection. We present a method in

(© The Eurographics Association 2009.

DOI: 10.2312/PE/vriphys/vriphys09/115-124

Figure 1. Examples of our GPU based bounding volume
hierarchy collision detection method used in three different
configurations.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys09/115-124

116 J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal

which the collision detection for multiple objects are han-
dled in parallel, and where the parallel threads support each
other in fetching the bounding volumes from memory.

Much work has been done on bounding volume hi-
erarchies in the field of Computer Graphics. Examples
are: approximating sphere hierarchies and time-critical col-
lision detection [Hub95], OBB hierarchies [GLM96], k-
DOPs [KHM*98]. Bounded deformation for fast updating of
bounded sphere threes [JP04], chromatic decomposition to
check for collisions between non-adjacent primitives using a
linear-time culling algorithm [GKJ*05], filtering technique
for continuous collision detection to avoid redundant test-
ing [WBO06], and continuous collision detection [TCYMO08].
However, much of this work is not directly applicable for
modern GPU based implementations.

In general, there are many works using the GPU for
collision detection. Baciu and Wong [BW02] dynamically
generates a hierarchy of cloth bounding boxes, in order
to perform object-level culling and image-based intersec-
tion tests using conventional graphics hardware support. The
method can handle 50K element cloth meshes at interac-
tive rates. [KOLMO02] computes the minimal translation dis-
tance to separate two polyhedrons using a combination of
object-space and image-space techniques. Results are com-
puted within 0.01-1 seconds for intersecting objects of 1-
2K elements. In [GRLMO3] an image-spaced method is
presented, which computes a potentially colliding set us-
ing visibility queries. The method only checks for overlap-
ping objects, has no support for self-collision, and its accu-
racy is limited by image-space resolution. The method can
handle 285K triangles at 35 milliseconds per frame, on a
GeForce FX Ultra 5800 GPU. Later, the accuracy problems
were improved in [GLMO05a] and extended to include self-
collisions in [GLMO5b]. In [GZ03] a shader programming
approach is taken to bounding volume hierarchy collision
detection. However, the GPU results are reported to be only
slightly faster than a CPU counter part. Our results indi-
cate close to an order of magnitude improvement in the best
cases. An image space method for convex object versus non-
convex object testing using six view volumes were presented
in [FWGO04]. A real-time voxelization technique was applied
in [CWZ*04] similar to the layered depth image method
by [HTGO04]. The voxelization method is capable of deal-
ing with 1.8M triangle objects within 100ms and the accu-
racy is limited by voxel resolution. Both approaches are re-
stricted to objects with closed watertight surfaces. Geometry
images were proposed in [BV05], where bounding spheres
are stored in a perfectly balanced mip-map like hierarchical
data structure. The method is shown to work with 60M ver-
tex objects at very fast rates. However, the work is limited
to zero genus objects, and not general triangle soups as we
consider in our work. k-DOPs bounding volume hierarchies
were hardware accelerated in [RBAZ05] using VHDL and
not GPUs. Geometry images were revisited in [ZHO7] tai-
lored specific for regular pieces of cloth.

Havok and NVIDIA showed with Havok Fx that a
large part of a physics engine could be implemented on
GPU [Hav09]. Others have done complete particle based
physics simulations on the GPU using shaders [Har07].
Implementation of broad-phase collision detection has
been done [Gra07]. Recently, PhysX and Bullet have
emerged [NVI09, bul09]. Bullet supports non-convex ob-
ject versus non-convex object collision detection using the
non-threaded CPU-based collision detection library GIM-
PACT [gim09]. For real-time interactive computer games
Bullet recommends, due to performance considerations, to
use approximating compounds for non-convex polygonal
objects instead of BVH based collision detection. Similar-
ily, Open Dynamics Engine has replaced the OPCODE li-
brary with GIMPACT [0de09]. We can only speculate about
the internal workings of PhysX. However, there is support
for triangle mesh terrains, although we have not been able to
find any triangle mesh versus triangle mesh collision detec-
tion feature in PhysX.

In [TSO5] a new data layout of a bounding volume hi-
erarchy was presented. Using escape indices allowed one
to encode a static descend rule for single traversals. The
static descend rule made it possible to use the data lay-
out for ray casting on a GPU. The ideas are now common
place for primitives against nonconvex object collision test-
ing queries, but can not support nonconvex object versus
nonconvex object collision testing as our method can. Fur-
thermore, our work supports completely general dynamic
descend rules. A recent GDC presentation was made on a
History flag method for bounding volume hierarchy colli-
sion detection on GPUs [Har09]. From the presentation, it
is not clear whether the work only considers single traver-
sals or is applicable to tandem traversals as our work is, nor
are any performance measurements given for us to compare
with. It seems that the History flags method uses AABBs
and stores 4 bits per level during traversal, besides all nodes
on the path to the root. No details are given about how colli-
sion results are collected nor details on load balancing. Our
method has no need for any run time book keeping, and our
blocking should provide us with better data locality than the
non blocked History flag method. Further, as far as we know
no open source projects or software libraries are currently
available, supporting parallel or distributed bounding vol-
ume hierarchy collision detection. Thus, existing work ad-
dressing object-space collision detection on GPU hardware
for general large scale triangle soups is sparse. Observe that
in our work we address scenes of triangle soups of up to a
total of 60M triangles.

In 2007 NVIDIA introduced Compute Unified Device Ar-
chitecture (CUDA) [CUDO09]. CUDA allows programmers
to use the GPU as an extra processor, and do development
in the high-level language C. Thus, CUDA has made it easy
to use the GPU for offloading highly parallel computations
from the CPU. Programmers are no longer required to make
a creative mapping between their problem and textures, and

(© The Eurographics Association 2009.

J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal 117

colors. Programmers using CUDA get the possibility to do
scatter operations. This is in contrast to older shader pro-
grams which only allow gather operations. In a way, CUDA
offers a clean break away from the classical way of GPU
programming by writing shaders. However, a bundle of new
problems emerge, e.g. the programmer has to control each
processor and the memory used. ATI has a technology sim-
ilar to CUDA, called AMD Stream SDK. This uses a com-
bination of high and low level programming language. Re-
cently, Open Computing Language was specified [Gro09].
In this paper we focus on NVIDIA hardware due to the pos-
sibility to develop in C.

One constraint with the modern NVIDIA GPUs is that
they do not have cache for all their different types of mem-
ory [NVI108]. Requesting data from memory therefore be-
comes expensive. There are some forms of cache: the texture
cache which caches nearby pixels when accessing the texture
memory, and the constant cache which is a small cache for
the constant memory. Another constraint is, that there is a
limited amount of registers available for doing the compu-
tations on the GPU. A general stack-based or queue-based
approach for doing bounding volume hierarchy collision de-
tection may therefore be slow, since the stack or queue would
have to be stored in the GPUs global memory. In this pa-
per, we introduce a method for performing bounding vol-
ume hierarchy collision detection on NVIDIA GPUs using
CUDA, where the threads aid each other in retrieving data
from memory.

We will first present our method. Following our presenta-
tion, we compare performance of our GPU implementation
to a CPU implementation. Finally, we conclude and make
suggestions for future work.

2. TheBlocked Hierarchy and Simultaneous Descend
Method

Each object is represented by a bounding volume hierar-
chy, and a tandem traversal scheme is used to find collisions
between a pair of objects. When testing for collisions the
traversal descends either of the two hierarchies, adding new
collision pairs to either a stack or a queue. The traversal may
descend both hierarchies at once, thereby adding more new
collision pairs at a single instant.

We will introduce a method for bounding volume hier-
archy collision detection descending simultaneously in both
hierarchies. Furthermore we will utilize NVIDIA GPUs. We
will start by explaining the hierarchy layouts and the bound-
ing volumes. Hereafter we will discuss descend problems
followed by hardware specific and memory discussions.

Use Blocked Data: A bounding volume hierarchy con-
tains bounding volumes at each node, encapsulating the tri-
angles contained in the sub-hierarchy of the node. A bound-
ing volume can e.g. be a sphere, an axis-aligned bounding
box (AABB), an oriented bounding box (OBB) etc [Eri05].

(© The Eurographics Association 2009.

We have chosen to use AABBs for three main reasons. First
of all, the AABB has a smaller memory footprint than e.g.
an OBB. Second an AABB has better pruning capabilities
than a sphere [Got00]. Third, using AABBs allow us to han-
dle deformable objects in the future. This is not the focus of
this paper and will therefore not be discussed further. Notice
it is straight forward to change our method to handle either
OBBs or spheres.

We store all nodes in a hierarchy in one contiguous ar-
ray. Each node is identified uniquely by an index to the array
entry holding the node. In our blocked hierarchy each node
has an index to a block of children. Currently we use a block
size of four children since this fits well with the number of
scalar processors and threads running in a multi processor.
Thus, a block must always have four consecutive nodes. The
advantage is that a block of nodes can be identified by a sin-
gle index to the first node in the block. To ensure that all
blocks are filled up with exactly four nodes we may have
to add imaginary nodes when constructing a hierarchy. The
imaginary nodes serve no other purpose than ensuring a nice
mapping of the memory. However, the usage of imaginary
nodes should be minimized if possible. Not only does the hi-
erarchy require more space, but the imaginary nodes are also
processed during the execution of a collision query although
as pass-through. A block of nodes can all be leaf nodes in
which case we call it a leaf block, or the block can contain a
mix of internal nodes and leaf nodes in which case we call it
a partial leaf block. If all nodes are internal nodes we call it
an internal block.

A collision detection query consists of several iterations.
In each iteration both bounding volume hierarchies are de-
scended, collision pairs are tested for overlap, possible col-
liding triangles are placed in a separate triangle pair array,
and new collision pairs are prepared for a future iteration.
This will continue as long as overlapping bounding volumes
are found.

When finding a collision between two bounding volumes,
new collision pairs will have to be added to a collision pair
array for a future iteration. Since each node has four chil-
dren, 16 new collision pairs will have to be added, because
all four nodes from one hierarchy must be tested for overlap
against all four nodes from the other hierarchy. However, it is
not necessary to add all 16 collision pairs to the collision pair
array, since the four nodes in a block lies consecutively in
memory. All 16 collision pairs are therefore implicitly given
from the indexes to the two blocks, see Figure 2. To process
a collision pair test, one must fetch the two corresponding
blocks, one from each object hierarchy, resulting in a total
of 8 bounding volumes.

Avoid Descend Problems: One problem may arise dur-
ing a descend when comparing an internal block with a leaf
block. In this case it is not possible to continue descending
both hierarchies. Either we can choose to add the collision
pairs to another new array, which will be handled by another

118 J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal

Figure2: Two bounding volume hierarchies, A and B. Trian-
gles denote arbitrary sub-hierarchies. If a collision is found
between the AABBs of the nodes a; and b; then it is only
necessary to add the collision pair (ag , bs) to the collision
pair array. When the collision pair (as , bs) is retrieved all
16 collision pairs (as , bs), (as , bg), (as , b7), ..., and (ag ,
bg) will be given implicitly due to the contiguous memory of
blocks.

kernel optimized for handling a single leaf node versus an
internal block, or we can choose to continue to add new col-
lision pairs to the collision pair array, thereby not utilizing
all 16 threads. Both solutions have disadvantages. In the first
solution, adding the nodes to another array means that we
will have to run yet another kernel, either within the same it-
eration, or in another set of iterations when all bounding vol-
ume collision pairs have been found. This will take up both
time and memory, and add complexity to the method. In the
second solution, adding the nodes to the existing collision
pair array means that it is possible to add the same collision
pair more than once. Since we only add a single of the 16
collision pairs to the collision pair array, we can not add an
internal block and a single leaf node. But we can add an in-
ternal block and a leaf block, suggesting that we descend in
one of the hierarchies but not in the other. We achieve this by
adding a collision pair containing the child index of the de-
scended hierarchy, and current index to the leaf block from
the other hierarchy. In this case, we must take care, not to
add the same collision pair more than once. This can happen
if one bounding volume node in one of the hierarchies col-
lide with two leaf nodes in the other hierarchy, see Figure 3.
We have chosen to use the second solution although it adds
a small amount of complexity to the kernel, it is still simpler
than writing a new Kkernel, thereby we achieve a more sim-
ple overall method. As a result of using the second solution,
some of the threads will perform overlap test that have al-
ready been done in a previous iteration. Hence, some of the
16 threads will only be used for fetching data from memory,
since their overlap tests are superfluous.

Figure 3: Squares denote leaf nodes. Assume a collision be-
tween a; and by and a collision between a; and b,. Since
we only can add blocks to the collision pair array, the col-
lision pair (ag , b1) will be added twice, unless this cases is
handled properly.

Figure 4: Assume a collision between a; and by and a col-
lision between a; and b,. This will add the collision pairs
(a5 , bs) and (a5 , by). If, in the next iteration, a collision
between as and b is found then the collision pair (as , bs)
will be added again.

If a bounding volume node has a partial leaf block as a
child. Then it is possible to add the same collision pair to the
collision pair array more than once. The problem is shown
in Figure 4. A solution to this problem is to restrict the hier-
archies to disallow nodes from having partial leaf blocks as
children. That is, a node can only have internal blocks or leaf
blocks as children. This restriction does not have any impact
on the method. Except if imaginary nodes are used more fre-
quently by the hierarchy construction method to compensate
for the lack of partial leaf blocks.

The GPU Overview: An overview of the blocked AABB
GPU collision detection method is given here. A collision

(© The Eurographics Association 2009.

J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal 119

pair, containing indexes to bounding volume blocks in the
two hierarchies together with an object pair index, is read
from memory. Using the object pair index a transformation
is read, allowing us to transform one of the AABBs from
one object into the coordinate system of the AABB from
the other object. The 16 threads running on one multipro-
cessor will read 4 nodes from each hierarchy. The work is
shared such that each thread reads half of an AABB bound-
ing volume node. Each of the 16 threads will then perform
a separating axis test for its designated pairs of AABBs. If
two boxes collide then a collision flag is written back to a
collision flag array, or in case of a leaf/leaf overlap occurs,
a leaf overlap flag is written back to leaf flag array. Here we
ensure that if a bounding volume node collides with one or
more leaf nodes, then only one flag is written to memory.
This was described in detail earlier.

We perform a prefix sum scan on the collision flag array,
thereby getting consecutive numbers for the collision pairs.
A collecting kernel can then be issued retrieving the collision
pairs, and copying them into a consecutive array, ready for
the next iteration. The same is done simultaneously for over-
lapping leaf nodes. The array of consecutive leaf nodes are
then added to an array of overlapping leaf nodes that later
will be tested for overlapping triangles. When this is done
the current iteration ends, and if there were found collid-
ing bounding volume nodes, a new iteration will be started.
When there are no more collision pairs a kernel is run to test
the triangle pairs for overlap. This kernel performs a sepa-
rating axis test on a pair of triangles. In order to avoid a lot
of memory allocation, on the GPU the memory will be pre-
allocated at the beginning of each collision query, based on
the largest amount of memory used in the previous query.
Pseudo-code for the complete method can be found in List-
ing 5.

Keep Data Alignment: The memory footprint of a single
AABB bounding volume node is a position, an extend, an
index to a block of children or an index to a triangle, and info
about whether the node is an internal node, a leaf node, or an
imaginary node. The position takes up 3 floats. The extend
also takes up 3 floats. The child index or triangle index can
be stored in the same integer since it is not possible to have
both a child and be a leaf node. The node type info can be
stored in 2 booleans. If we store the 2 booleans in an integer,
we can store the complete bounding volume node in 6 floats
and 2 integers, and if we store the 2 integers in floats, we
can store an AABB bounding volume node in 2 of the float4
types of CUDA.

By reducing the maximum value of the children block and
triangle indexes, we can store the index and the two booleans
in a single integer. This will enable us to store the bound-
ing volume in 7 floats, or a float4 and a float3. Thereby we
save 4 bytes per bounding volume node. However, our expe-
rience indicate, that a float3 takes significantly more time to
retrieve from memory than a float4. We will therefore use the

(© The Eurographics Association 2009.

extra 4 bytes in each bounding volume node. A half-warp is
a small batch of threads running simultaneously. On current
NVIDIA GPUs 16 threads corresponds to a half-warp. Each
of these 16 threads can share the burden of retrieving the 8
bounding volumes from memory, by only retrieving a single
float4 each.

Create Consecutive Results: On GPUs there are no ways
of maintaining a dynamic data structure like e.g. a C++ STL
vector, where we can add elements as they are found. Since
the tandem traversal finds an unknown number of collisions
in each iteration, we could just allocate enough memory for
the possibility that all collision tests yield an overlap, i.e for
each thread we have one memory location large enough to
contain a collision pair. A thread could then write into its
own designated location. At the same time, we need an ar-
ray where we can designate whether a collision is found or
not in a given thread. The second array, the collision flag
array, will be used in another pass to find a unique consec-
utive index for each collision pair in order to do a collec-
tion operation. A similar array, leaf flag array, is needed for
the triangles. All of this requires a large amount of memory
for each collision pair, where potentially no new collisions
are found. We will therefore try to minimize the amount of
memory at the cost of a few extra memory look ups. Instead
of writing the collision pair into a designated position as de-
scribed above, we will just indicate in the collision flag array
whether a collision is found. When we later do the collection
routine, we will find the exact collision pair. This pair is well
known since a thread is working on a specific collision pair.
If a collision is found, the collision pair to add for next itera-
tion is based on whether one of the bounding volume nodes
is a leaf or not.

3. Comparison of GPU and CPU

A naive implementation of a stack-based traversal would
need 32 integers to maintain a stack of 16 elements. The
shared memory on NVIDIA 8- and 9-series GPUS consist
of 16384 bytes, where some of these are used by the mul-
tiprocessor. Therefore, if the stack was to be maintained in
the shared memory on the GPU then there would be less than
128 threads per multiprocessor. This low number of threads
do not exploit the massive parallelism of the GPUs. Thus the
stack would have to be maintained in the GPUs global mem-
ory, significantly slowing down the performance due to data
fetching. Therefore, a GPU version of a naive stack-based
implementation is not feasible to compare with.

To our knowledge, no comparable GPU methods ex-
ist. Therefore we compare with an accepted standard CPU
method, Rapid [GLM96]. Rapid can handle the exact same
types of triangle meshes as our method, though Rapid
uses OBBs where we use AABBs. This should give Rapid
better pruning capabilities. Both our method and Rapid
have been integrated into the same simulator. The simula-
tor is a constraint based simulator, using a velocity-based

120 J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal

al gorithm GPU col |l i sion detection ()

al | ocate nenory
copy collision pairs to GPU
while collision pairs

run col lision kernel

prefix sum scan on collision flag array
retrieve collision pairs and copy into new collision pair array

prefix sum scan on leaf flag array

retrieve triangle pairs and copy into potential triangle pair array

end while

test triangles in potential triangle array for overlap

end al gorithm

Figure5: Pseudo code illustrating the complete GPU collision detection method.

complementarity formulation and a projected Gauss-Seidel
solver [ESHDO5]. For both implementations, the time to per-
form the collision detection is measured. The measured time
for collision detection is only for finding pairs of possibly
overlapping triangles. Finding the contact points is not part
of our method. The computer used for the tests has an In-
tel Core-2, Quad CPU Q6600 running at 2.40GHz, and an
NVIDIA 9800GX2 graphic cards. It should be noted, that
even though both the CPU and the GPU have more than one
processor core, 4 for the CPU and 2 for the GPU. For sim-
plicity and fairness, only a single core is used on both.

Performance of the collision detection pipeline is highly
dependent on the type of configuration that is being simu-
lated, the number of objects and the geometric complexity
of the objects. Thus, we have designed a test-bed that tries to
capture all the performance dependencies on these parame-
ters. Our test-bed includes more than 1350 test simulations
taking roughly 2 days in total for one person to conduct.

In [Erl07], a taxonomy of rigid body configuration types
are defined having different contact statistics. From this
taxonomy we have extracted the three configuration types
which we believe span the extreme behaviours, when con-
sidering bounding volume hierarchy collision detection.

A structured stack is very compact, having many objects
in close proximity with large areas of contact. The conjec-
ture is that many collision queries will be performed, and
all queries will reach many leaf-leaf tests. Our expectation
is that this type of configuration will benefit the most from a
GPU acceleration. An unstructured stack, like a random pile,
will have voids in between objects, thereby reducing the con-
tact areas between objects, compared to a structured stack.
Although objects are in close proximity, we expect queries,
that are able to prune many unnecessary leaf-leaf tests. Our
expectation is that this type of configuration yields lesser
performance speedup than the structured stack. Where stack-
ing is highly static and very contact intensive, a dynamic
configuration such as a rock slide will have many moving
objects. Many possibly colliding object pairs are separated,

and a collision query would quickly be halted. A few objects
would be impacting, for instance with a support plane. The
contacts will be nearly point-wise indicating that the tandem
traversal will descend to a few number of leaf-leaf tests. It is
our hypothesis that this type of configuration benefits from
the pruning capabilities of the hierarchies, and as such will
benefit the least from a GPU acceleration. We expect all con-
figurations to benefit more from GPU acceleration when the
number of objects is increased, or when the geometric com-
plexity increases. When increasing the number of objects we
expect the number of pair-wise collision queries to increase,
and when increasing the geometric complexity we expect
more leaf-leaf tests to be performed.

The contact area is estimated by computing the ratio of
the number of triangle overlaps divided by the total number
of triangles in each test configuration. The results are shown
in Figure 6. This validates our hypotheses that a structured
stack has large contact areas where pile has lesser contact
area and rock slide has almost no contact area.

\We have not spend time on constructing optimized hierar-
chies. As a result, roughly one third of our hierarchies con-
sists of imaginary nodes. We expect this will give us perfor-
mance penalties. It is expected that we will perform more
collision overlap tests than Rapid since OBBs have better
pruning capabilities than AABBs. This will result in a per-
formance penalty for our method.

The rock slide contains a number of cows rolling down a
tilted ground object. The test is run with five different num-
bers of cows, 500, 1000, 1500, 2000, and 2500. For each run,
the cows are subdivided zero, one or two times which gives
1500, 6000, and 24000 triangles. The cows have rolled for
2000 frames. When cows fell out of the bottom, they were
inserted at the top, to maintain the same amount of objects in
the scene. The timing is an average of the 2000 frames. The
unstructured stack contains a number of cows lying in a pile.
The test is run with five different pile sizes, with 216, 343,
512, 729 and 1000 cows. For each pile size, the cows are
subdivided zero, one or two times which gives 1500, 6000,

(© The Eurographics Association 2009.

J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal 121

Triangles per Object
Objects 1500 6000 24000

1500 0.0240 0.0009 0.0004
2000 0.0290 0.0010 0.0004
2500 0.0038 0.0150 0.0007

(a) Rock Slide

Triangles per Object
Objects 1500 6000 24000

512 0.0747 0.0191 0.009
729 0.0871 0.0221 0.005
1000 0.0566 0.0134 0.035

(b) Pile

Triangles per Object
Objects 12 48 192
512 6.5990 6.8112 6.9840
729 6.5990 6.8112 6.9840
1000 6.5990 6.8112 6.9840

(c) Stack

Figure 6: The amount of contact area is estimated as the
number of colliding triangles divided by the total number
of triangles. This allows us to compare differences in the
amount of contact area for different configuration types. Ob-
serve that the amount of contact area is largest for the stack
configuration.

and 24000 triangles. Each run was repeated ten times, and
the result is an average. The structured stack contains a num-
ber of boxes which are stacked closely together in a 3D grid.
The test is run with five different grid sizes, from six to ten,
which gives from 216 to 1000 boxes. For each grid size, the
boxes are subdivided zero, one, and two times which gives
from 12 to 192 triangles. Each run was repeated ten times,
and the result is an average. The reason this test is run with
boxes and not cows as the other test setups is that boxes are
easier to stack than cows.

The amount of memory needed on the GPU depends on
the number of overlaps found. Therefore, in the rock slide
configuration with the lowest amount of overlaps, more ob-
jects can be added to the simulation. Fewer objects can be
used in the unstructured pile, and the fewest amount can be
used in the structured stack. Thus, maximum triangle counts
of 60M, 24M and 19K (for the rock slide, pile and struc-
tured stack respectively) are the largest possible configura-
tion bounds by the hardware we used.

The test results are given for the running time of Rapid,
CUDA with copying data to and back from the GPU, and
CUDA only. Complete summarizing graphs of all 1350 test
results can be seen in Figure 7. For detailed viewing we have
shown a few selected test runs in Figure 8.

As the results show, our CUDA method is faster than
Rapid in all configurations except for the rock slide with 500

(© The Eurographics Association 2009.

objects. The speedup becomes more noticeable when there
are many objects in the scene. When using more than 500
objects, rock slide has generally the lowest speedup, at up to
twice that of Rapid. The unstructured stack with more colli-
sions have a larger speedup at about 3 to 7 times. The largest
speedup is in the structured stack with many collisions at 5
to 8 times that of Rapid. Notice, that even with copying data
to the GPU and back again, our CUDA method is still faster
than Rapid. The structured stack benefited the most from our
method, as expected. However, we would have expected a
larger difference between the stack and pile. This may be
caused by either the many imaginary nodes in our hierar-
chies, the worse pruning capabilities of the AABBs over the
OBBs or a combination of both.

4. Conclusion

We have introduced, implemented and tested a method for
doing bounding volume hierarchy collision detection on
NVIDIA graphics hardware. Our method utilize consecu-
tive threads to fetch bounding volume nodes from memory
thereby lowering the amount of data read by a single thread.
The presented method uses AABBs but is not restricted to
this type of bounding volumes.

In almost all test configurations, our method was faster
than the CPU reference, Rapid. We believe this shows that
there is much potential in using the GPU for collision detec-
tion.

Our method has some potential areas for future improve-
ment. First, it would be interesting to try to use OBBs in-
stead of AABBs. Second, constructing better hierarchies
with few or zero imaginary nodes should improve the per-
formance since fewer unnecessary overlaps need to be per-
formed. Third, the collision flag array and the leaf flag ar-
ray both could be created as binary arrays since the only in-
formation stored in them is whether a collision or triangle
overlap is found or not. This should minimize the amount of
memory used, making it possible to handle larger scenes.

5. Acknowledgements

The authors would like to thank NVIDIA for their dona-
tion of graphics hardware, and the eScience Center, Faculty
of Science, University of Copenhagen for their donation of
computer hardware.

References

[bul09] Bullet physics library. web, July 2009. Open source
project, ht t p: / / www. bul | et physi cs. cont .

[BV05] BENES B., VILLANUEVA N. G.: Gi-collide: collision
detection with geometry images. In SCCG ’05: Proceedings of
the 21st spring conference on Computer graphics (New York,
NY, USA, 2005), ACM, pp. 95-102.

http://www.bulletphysics.com/

122

Stack: Rapid

w
w

-

Time in seconds
~
s

Time in seconds
~

o

0

Triangles per object 216 Number of objects Triangles per object

Pile: Rapid

Time in seconds

o kN W s g
Time in seconds

o kN ow s g

24000 1000

6000

24000
512 6000
343 1500
Triangles per object

1500

Triangles per object 216

Number of objects

Rockslide: Rapid

o
w
o
@

Time in seconds
Time in seconds

2500
2000
1500 6000

1000 1500
Triangles per object

6000
1500

Triangles per object 500

Number of objects

Stack: Cuda + copy

216

Pile: Cuda + copy

216

Rockslide: Cuda + copy

500

343 1500

1000 1500

J. Damkjer& K. Erleben / GPU Accelerated Tandem Traversal

Stack: Cuda only

w

Time in seconds
R

Number of objects Triangles per object 216 Number of objects

Pile: Cuda only

Time in seconds
ok N W s oG

1000 1000

24000
512 6000

Number of objects Triangles per object Number of objects

Rockslide: Cuda only

o
w

Time in seconds

2500 2500
2000
1500 6000

2000
1500
1000

Number of objects Triangles per object 500 Number of objects

Figure 7: Results of the test runs. Structured stack speedup of 5 to roughly 8 and unstructured stack speedup of 3-7. The rock
slide speedup is only up to about 2. Notice that Rapid is a little faster for 500 objects in the rock slide configuration. This is due

to the better pruning capabilities of the OBBs.

[BW02] BAciu G., WONG W. S.-K.: Hardware-assisted self-
collision for deformable surfaces. In VRST *02: Proceedings of
the ACM symposium on Virtual reality software and technology
(New York, NY, USA, 2002), ACM, pp. 129-136.

[CUD09] CUDA: Compute unified device architecture.
web, July 2009. http://ww. nvi di a. conl obj ect/
cuda_hone. ht m .

[CWZ*04] CHEN W., WAN H., ZHANG H., BAO H., PENG Q.:
Interactive collision detection for complex and deformable mod-
els using programmable graphics hardware. In VRST ’04: Pro-
ceedings of the ACM symposium on Virtual reality software and
technology (New York, NY, USA, 2004), ACM, pp. 10-15.

[Eri05] ERICSON C.:
Kaufmann, 2005.

[Erl07] ERLEBEN K.:
multibody dynamics animation.
(2007), 12.

Real-Time Collision Detection. Morgan

Velocity-based shock propagation for
ACM Trans. Graph. 26, 2

[ESHDO5] ERLEBEN K., SPORRING J., HENRIKSEN K.,
DOHLMANN H.: Physics-Based Animation. Charles River Me-
dia, 2005.

[FWG04] FAN Z., WAN H., GAo S.: Simple and rapid colli-
sion detection using multiple viewing volumes. In VRCAI ’04:
Proceedings of the 2004 ACM SIGGRAPH international confer-
ence on Virtual Reality continuum and its applications in industry
(New York, NY, USA, 2004), ACM, pp. 95-99.

[gim09] Gimpact. web, July 2009. Open source project,
http://gi npact . sourcef orge. net/.

[GKJ*05] GOVINDARAJU N. K., KNOTT D., JAIN N., KABUL
l., TAMSTORF R., GAYLE R., LIN M. C., MANOCHA D.: In-
teractive collision detection between deformable models using
chromatic decomposition. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers (New York, NY, USA, 2005), ACM, pp. 991-999.

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: Obb-
tree: a hierarchical structure for rapid interference detection. In

(© The Eurographics Association 2009.

http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://gimpact.sourceforge.net/

J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal 123

Rockslide: Varying number of objects

—Rapid
——CUDA + copy|
0.37|——CUDA only

Time in seconds

Time in seconds

Rockslide: Varying number of triangles per object

—Rapid
——CUDA + copy|
——CUDA only
0.25|

0.2

500 1000 1500 2000 2500 6000 24000
Number of objects Number of triangles per objects
@ (b)
Pile: Varying number of objects Pile: Varying number of triangles per object
5
—— Rapid —— Rapid
4.5] — CUDA + copy| 4.5 —— CUDA + copy|
——CUDA only ——CUDA only
4] 4
35 3.5
) @
8
g3 £
S g
& &
c 25 c 2.5
g 2 g 2
P (=
15 1.5
1 1
05 . — osf
9 3
216 343 512 729 1000 1500 6000 24000
Number of objects Number of triangles per objects
© (d)
Stack: Varying number of objects Stack: Varying number of triangles per object
3. 35 :
—Rapid —Rapid
——CUDA + copy| ——CUDA + copy|
3| —CuDA only 31— CUDA only
2.5 2.5
@ @
2 2
g 2 8 2
3 &
< <
@ o 1.5
e g
= =
1 1
05 o 0.5 -
glﬁ 343 729 1000 12 192

512
Number of objects

®©

48
Number of triangles per objects

®

Figure8: Selected timings for the three configuration types. The plots in the left column are for the test cases using the largest
number of subdivisions and the plots in the right column are for the test cases with the largest amount of objects.

SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1996), ACM, pp. 171-180.

[GLMO05a] GoVvINDARAJU N. K., LIN M. C., MANOCHA D.:
Fast and reliable collision detection using graphics processors.
In SCG ’05: Proceedings of the twenty-first annual symposium
on Computational geometry (New York, NY, USA, 2005), ACM,
pp. 384-385.

[GLMO5b] GovINDARAJU N. K., LIN M. C., MANOCHA D.:
Quick-cullide: Fast inter- and intra-object collision culling using
graphics hardware. In VR ’05: Proceedings of the 2005 IEEE
Conference 2005 on Virtual Reality (Washington, DC, USA,
2005), IEEE Computer Society, pp. 59-66, 319.

[Got00] GoTTSCHALK S.: Collision Queries using Oriented
Bounding Boxes. PhD thesis, Department of Computer Science,
University of N. Carolina, Chapel Hill, 2000.

(© The Eurographics Association 2009.

[Gra07] GRAND S. L.: GPU Gems 3. Addison-Wesley Pro-
fessional, 2007, ch. 32: Broad-Phase Collision Detection with
CUDA.

[GRLMO3] GovINDARAJU N. K., REDON S., LIN M. C,,
MANOCHA D.: Cullide: interactive collision detection be-
tween complex models in large environments using graphics
hardware. In HWWS °03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(Aire-la-Ville, Switzerland, Switzerland, 2003), Eurographics
Association, pp. 25-32.

[Gro09] GRoup K.: Open computing language. web, July 2009.
htt p: // ww. khr onos. or g/ opencl /.

[GZ03] GRESS A., ZACHMANN G.: Object-space interference
detection on programmable graphics hardware. In SIAM Conf. on
Geometric Design and Computing (Seattle, Washington, Nov.13—
17 2003), Lucian M. L., Neamtu M., (Eds.), Nashboro Press,

http://www.khronos.org/opencl/

124 J. Damkjeer& K. Erleben / GPU Accelerated Tandem Traversal

pp. 311-328.

[Har07] HARADA T.: GPU Gems 3. Addison-Wesley Pro-
fessional, 2007, ch. 29: Real-Time Rigid Body Simulation on
GPUs.

[Har09] HARADA T.: Parallizing the physics pipeline, physics
simulations on the gpu. web, March 2009. http://ww.
gdconf. cont .

[Hav09] HAvokFx: Physics simulation on nvidia gpus. web, July
2009. htt p: // ww. havok. com

[HTG04] HEIDELBERGER B., TESCHNER M., GROSS M.: De-
tection of collisions and self-collisions using image-space tech-
niques. In Twelfth International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (Winter
School on Computer Graphics) (February 2004), pp. 145-152.

[Hub95] HusBaARD P. M.: Collision detection for interactive
graphics applications. |IEEE Transactions on Visualization and
Computer Graphics 1, 3 (1995), 218-230.

[JHO8] JANG H., HAN J.: Fast collision detection using the a-
buffer. The Visual Computer 24, 7 (2008), 659-667.

[JPO4] JAaMES D. L., PaI D. K.: Bd-tree: output-sensitive col-
lision detection for reduced deformable models. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
ACM, pp. 393-398.

[KHM*98] KLosowskl J. T., HELD M., MITCHELL J. S. B.,
SowizrAL H., ZIKAN K.: Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Transactions on
Visualization and Computer Graphics 4, 1 (1998), 21-36.

[KOLMO02] Kim Y. J., OTADUY M. A., LIN M. C., MANOCHA
D.: Fast penetration depth computation for physically-based
animation. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New
York, NY, USA, 2002), ACM, pp. 23-31.

[KP0O3] KNOTT D., PAI D. K.: CInDeR collision and interference
detection in real-time using graphics hardware. In Proceedings
of Graphics Interface (2003), pp. 73-80.

[NVIO8] NVIDIA: NVIDIA CUDA Programming
Guide, version 2.0 ed., 2008. http://devel oper.
downl oad. nvi di a. com conput e/ cuda/ 2_0/ docs/
NVI DI A_CUDA_Pr ogr amm ng_Gui de_2. 0. pdf.

[NVIO9] NVIDIA: Physx. web, July 2009. http:// www.
nvi di a. cont obj ect/ nvi di a_physx. htm .

[0ode09] Open dynamics engine. web, July 2009. Open source
project, ht t p: / / ww. ode. or g.

[RBAZ05] RAABE A., BARTYZEL B., ANLAUF J. K., ZACH-
MANN G.: Hardware accelerated collision detection - an archi-
tecture and simulation results. In DATE ’05: Proceedings of the
conference on Design, Automation and Test in Europe (Washing-
ton, DC, USA, 2005), IEEE Computer Society, pp. 130-135.

[RZ08] RAABE A., ZAVELBERG F.: Defying the Memory Bot-
tleneck in Hardware Accelerated Collision Detection. In WSCG
2008 (University of West Bohemia, Plzen, Czech Republic,
2008).

[TCYMO08] TANG M., CURTIS S., YOON S.-E., MANOCHA D.:
Interactive continuous collision detection between deformable
models using connectivity-based culling. In SPM ’08: Proceed-
ings of the 2008 ACM symposium on Solid and physical modeling
(New York, N, USA, 2008), ACM, pp. 25-36.

[TSO5] THRANE N., SIMONSEN L. O.: A Comparison of Ac-
celerating Structures for GPU Assisted Ray Tracing. Master’s
thesis, Department of Computer Science, University of Aarhus,
2005.

[vdB03] VAN DEN BERGEN G.: Collision Detection in Interactive
3D Environments. Morgan Kaufmann, 2003.

[WB06] WoONG W. S.-K., BAclu G.: A randomized marking
scheme for continuous collision detection in simulation of de-
formable surfaces. In VRCIA *06: Proceedings of the 2006 ACM
international conference on Virtual reality continuum and its ap-
plications (New York, NY, USA, 2006), ACM, pp. 181-188.

[ZHO7] ZINK N., HARDY A.: Cloth simulation and collision de-
tection using geometry images. In AFRIGRAPH ’07: Proceed-
ings of the 5th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa (New York,
NY, USA, 2007), ACM, pp. 187-195.

(© The Eurographics Association 2009.

http://www.gdconf.com/
http://www.gdconf.com/
http://www.havok.com
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://www.nvidia.com/object/nvidia_physx.html
http://www.nvidia.com/object/nvidia_physx.html
http://www.ode.org

