
EUROGRAPHICS 2008 Education papers

© The Eurographics Association 2008.

From a Light CG Framework
to a strong Cannibal Experience

Jerke Boers2, Jeroen Dobbe2, Remco Huijser2 and Rafael Bidarra1

1Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, The Netherlands

2Cannibal Game Studios, Delft, The Netherlands

Abstract
Game development courses are being more and more deployed within computer graphics (CG) curricula. A funda-
mental element in the pedagogical effectiveness of such courses is the quality of the development framework pro-
vided to the students. We discuss the most important challenges faced throughout the years while using, configuring
and improving the framework for our games project, and describe the solutions we came up with to resolve those
issues. We conclude that a carefully designed development framework, including all underlying technology, course
material and quality support, significantly determine the quality of a project-based game development course. In
addition, when the teams in such projects have an interdisciplinary character, providing an effective collaboration
environment is crucial for the success of team members. We believe that the key to the huge success of our games
project lies, to a great extent, in the deployment of a professional working environment specifically crafted for an
educational setting.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and In-
formation Science Education – Computer science education, Curriculum, K.8.0 [Personal Computing]: General –
Games

1. Introduction

Delft University of Technology introduced project-based
education in its computer science (CS) curriculum five
years ago, including a second year games project. Initially
designed as little more than a companion project to the
computer graphics course, our games project has matured
into a large project integrating a broad range of computer
science topics, and bringing our CS students to work for
the first time in a realistic and interdisciplinary game de-
velopment team, involving other students from game de-
sign studies. In such projects, a variety of facilities, or
development framework, has to be provided to the stu-
dents, in order to assist them concentrating on their project
specific tasks, without dispersing their attention in many
sideline tracks.

An important lesson we learned in these five years is that
the quality of the deployed framework, including the whole
development environment, from software libraries to
documentation and technical support provided, plays a
crucial role in achieving the desired CS, and in particular
computer graphics (CG), learning objectives.

The pedagogical background and organisational setup of
this project have been extensively described in
[BBDH08a]. In this paper, we limit ourselves to motivate
the evolution of a successful framework for our games
project throughout the years: we discuss the most impor-

tant challenges faced while continuously using, configur-
ing and improving the framework, and describe the solu-
tions we came up with to resolve those issues. At the end,
some conclusions are drawn that should be useful to any-
one running game design and development courses.

2. First lesson: focus on game, not on technology !

After the first running of the project, it became soon appar-
ent that a few students were somehow frustrated and disap-
pointed with the results achieved. Initial enthusiasm was
taken down quite a bit due to the fact that they had not
been able to concentrate on making their game, as they had
to overcome many difficulties related to the programming
language and support technology. Once students had fi-
nally learned how to work with the framework provided,
they had very little time left for creating their game, which
should have been the focus of the whole course.

As games are created using a lot of technology, an im-
portant part of any games project is the choice of the tech-
nology to work with. In this phase, the project was sup-
ported by the OGRE rendering engine [Ogr07]. This en-
gine is written in C++, which was considered the industry
standard. But in the context of "inexperienced" under-
graduate students who have to develop a large and complex
software product, C++ becomes a problem. Students be-
come more focused on mastering the programming lan-
guage than on the development of their game.

http://www.eg.org
http://diglib.eg.org

J. Boers, J. Dobbe, R. Huijser & R. Bidarra / A Strong Cannibal Experience

© The Eurographics Association 2008.

Furthermore OGRE, an open source engine, was back
then not easy to install and lacked quality support and
documentation. On top of that, we needed the functionality
of a complete game engine, which includes a lot more than
just graphics. Students basically had to first set up OGRE,
then choose a sound library, set that up to work and share
the right details with OGRE. In some cases even a physics
and collision engine had to be integrated. This all in a lan-
guage they felt uncomfortable with, before they could even
begin work on their actual assignment: the game.

All in all, the most important lesson learned was that the
choice of supporting technology for your course or project
should really be carefully made and aligned in straight
relation to the learning objectives. In order to get students
to focus on the actual course goals (e.g. applying computer
graphics techniques and concepts in practice), you will
have to carefully tune the choice of tools, language and
libraries in line with those goals.

3. Seeing the light

During the second year this project was run (Spring 2004),
we started to realize how we could improve the above
situation. So a couple of students, who were particularly
keen with games and their technology, formed a develop-
ment group called Cannibal, and started to work on a new
game engine. In order to adopt this new technology in our
games project, we had set as requirements that (i) it was
intuitive to use, (ii) it enabled students to realize their
dreams and (iii) it was fun to work with.

Key aspect of this new engine was that it favored usabil-
ity (ease of use) over raw performance. This made it easier
to use, but also more manageable, both leading to in-
creased productivity and a better focus on creating a game.
This motivation also led to the choice of C# as the main
programming language. Although C# is not an industry
standard in game development, it has proven itself to be
very easy to learn and work with [BAT04] and offers good
performance.

Complementary to the choice of C#, Managed DirectX
[MIL03] was also chosen as a managed graphics frame-
work. Together, the Cannibal Engine and a managed
framework based on C# and Managed DirectX, took away
a lot of the technical details, so that students could focus
more on the design of the system and the project require-
ments. A better focus on design is especially convenient
for game development projects because they tend to grow
exponentially in complexity as they grow in size.

After that first year using the Cannibal Engine in our
course, a survey was conducted among the students. Re-
sults of this survey showed that almost 90% of the students
found it very easy to install and update the Cannibal En-
gine. This was a major improvement, looking at the prob-
lems with OGRE in the previous years. Also, 100% of the
students could get along with the new programming envi-
ronment offered by C#. Regarding the structure of Canni-
bal, 80% thought it was very clean and very intuitive. Con-
sidering the problems and frustrations users experienced
during previous runs of the project, and the promises made

by the Cannibal Engine, these results confirmed the im-
provement.

During the project, student enthusiasm grew as they in-
creased their programming speed and were able to accom-
plish a lot in a short amount of time. This led to them re-
questing lots of new features to accommodate their new
found wishes, hardly leaving us any time for testing, which
allowed for a number of issues to creep in. Although some
small imperfections were still latent in the Cannibal En-
gine, and some new ones were introduced with every new
feature being released, most of the students found that the
problems were handled swiftly by the teaching staff.

All in all it seemed that the focus on usability and sup-
port, and not so much on features and performance turned
out to be a very good and effective choice. Students could
get right into creating their games, instead of having to first
struggle with all the 'complicated' technology and language
issues.

4. The next notch: supporting multidisciplinary work

Considering the immediate success of the previous years,
we started a pilot collaboration with the Utrecht School of
the Arts (HKU), which offers a bachelor degree on Game
Design and Development. Their second year students also
have a one-semester project, focusing exactly on the game
design process as a whole. Integrating their game design
project with our game development project led to one large
multidisciplinary project.

The Cannibal team continued to improve their engine on
usability, a number of new features and also on perform-
ance. With the addition of multidisciplinary teamwork and
bigger groups, something had to be done about collabora-
tion support.

4.1 Evolving the engine

The evolution of the Cannibal framework has been a con-
tinuous process driven by the eagerness of the Cannibal
team to improve their technology. In this process, improv-
ing usability has always remained the focus point of the
development taking user feedback into account. In addi-
tion, the team has also worked on new techniques like col-
lision detection methods and different dynamic lighting
models. The latter one has resulted in a version of the en-
gine that used deferred lighting, theoretically allowing an
unlimited number of dynamic light sources.

In this phase, one of the most important developments of
the Cannibal framework has been the adoption of Micro-
soft's XNA [Xna07] . XNA not only enables Cannibal to
provide cross platform development using C# on both
Windows and Xbox360, but it also comes with a conven-
ient development environment called Game Studio Ex-
press, further increasing the usability of the engine and the
focus on students' support.

J. Boers, J. Dobbe, R. Huijser & R. Bidarra / A Strong Cannibal Experience

© The Eurographics Association 2008.

4.2 Collaborative environment

In early editions of the games project, only a marginal
working environment was provided to the students, leaving
the collaboration up to them. Students realized that col-
laboration was hard, but were handed no tools to cope with
this. To this end the Cannibal team set up a working envi-
ronment which allowed students to manage their documen-
tation, code and assets and planning online.

With a change of curriculum at Delft University of
Technology, the games project was expanded to one se-
mester and, for the first time, it was combined with a Game
Design (GD) project at the Utrecht School of the Arts,
leading to a multidisciplinary, and therefore much richer,
course [BBDH08b]. With this change, collaboration within
each team became even more important as the project in-
volved a larger, rather diverse group of students. More and
more game development aspects were included in the
process, so planning became more important with geo-
graphically dispersed groups.

To enable students to learn effectively from this collabo-
ration process, a completely integrated working environ-
ment was provided in which they had access to a number
of different collaboration tools.

First we wanted students to be able to share information
and documentation about the product with each other in a
flexible way. A Wiki system [CL01], specifically designed
with collaborative editing in mind, is particularly suited for
this purpose. The wiki system was also used quite often for
discussion and communication.

To enable students to do effect planning with tasks and
milestones, a ticketing (or task tracking [SC05]) system
was also provided. This allowed students to discuss and
create a planning and task division. Students could then
check the status of their project online and share informa-
tion on their progress with each other, leading to more
insight in the overall team progress.

An integrated Subversion system [Pil04] was also pro-
vided, which allowed students to store their source code
and game assets. As it was integrated into the rest of the
collaboration environment, it allowed students to easily
link their source to specific tickets and wiki pages.

As an extra tool a forum was provided by the HKU part-
ners and this seemed to be a much desired functionality on
their part.

4.3 Even more lessons learned

As students were moving faster and faster through course
material and their requirements, the need for more and
more information on more advanced game development
techniques arose. Instead of having to explain techniques
and concepts every once in a while, teachers and assistants
were now overloaded with new questions.

As it turned out, collaboration between different disci-
plines is a lot more difficult than between like-minded
people, even with the right tools available. Suddenly, art-
ists had to understand technical people and vice versa;
content created by GD students now had to be adapted to

suit the needs of CS students and the capabilities of the
development platform. Since these different disciplines
cause problems also faced by many established game de-
velopment studios in the past [RF98], some clashes were to
be expected. In exceptional cases, mostly due to inexperi-
ence, this would lead to an 'over the fence' culture, where
GD students would create content, throw it over the fence
and blame the CS colleagues for it not working. These, in
turn, would point the finger back at the GD students, lead-
ing to undesirable and non-productive situations. However,
learning through experience, all teams were eventually able
to work out their differences and become rather productive.

5. The Cannibal Experience

After the success of last year, the Cannibal staff realized
the potential of their solution for educational settings, and
started to work on their first professional product using the
developed technology. This product, called Cannibal Ex-
perience, is directly aimed at higher-education institutions,
supporting them to use game development as a means to
teach their curriculum.

Cannibal Experience consists mainly of three compo-
nents, each of which is considered critical for the success
of any game related course, with an emphasis on project-
based education.

5.1 Game Development Platform

As the Game Engine is now part of a professional product,
it has been carefully revised and more rigorously tested.
More features have been added and a lot of flexibility has
cautiously been added, without compromising the usability
and cleanliness of the API.

During development of the new version of the engine,
special attention has been paid to allow students to work
with the engine on their knowledge level. Students using
game technology or the engine for the first time can use the
engine at a very high-level, using only top-level features.
When students want to delve deeper into the material they
can start extending and modifying the behavior of the en-
gine at any level they feel fit. They can for instance add
new event triggers, add new sources of textures (e.g. a
webcam) or even implement new input devices (e.g. the
Wii controller [Thi07]).

Since most engines are specifically built for professional
use, they are usually more difficult to start with. The
shorter learning of Cannibal curve allows students to get
started more easily.

5.2 Online Collaboration Environment

As discussed before the online collaboration environment
contains several tools for the students to share work and
collaborate. After careful evaluation a (simplified) discus-
sion forum has been added to better facilitate online dis-
cussion between students at different geographical loca-
tions. This also allows students to work at different times,
since a forum is by definition an asynchronous communi-
cation tool.

J. Boers, J. Dobbe, R. Huijser & R. Bidarra / A Strong Cannibal Experience

© The Eurographics Association 2008.

Having gone professional, Cannibal staff will usually be
less involved in future educational projects than has been
the case with the original games project described in this
paper. Therefore different tools were provided for teachers
to manage their course, enroll students, set up teams, and
monitor progress. These new functionalities provide them
with valuable insight, and helps them decide when and
where to focus their guidance.

Besides supporting project planning and team collabora-
tion, a complete community environment has also been
integrated. Students and teaching staff alike can come to-
gether online and hold their discussions using Cannibal
Experience. In addition, teaching staff have some private
forums where they can discuss course setup and other edu-
cational or tutoring aspects.

The community environment also provides a way for all
its members to communicate directly with the Cannibal
staff, by means of a forum, for feature requests, bug report-
ing, submitting suggestions, etc. Cannibal, in turn, con-
tinuously provides the Cannibal Experience community
with knowledge about the environment and its compo-
nents. Creating a community and actively participating in it
allows Cannibal and teaching staff to cope with the con-
tinuous requests for information and feedback from stu-
dents.

5.3 Game Environment

All the aforementioned adjustments greatly contribute to
the improvement of the framework. But there is still one
element missing for students to get started right away: a
collection of tutorials that students can study and build
upon. These tutorials range from getting to start up the
game to collision detection algorithms, character AI and
working with content like textures, sounds, models and
animations. For students to get started with the concepts
and techniques even faster than before we created the
Game Environment.

The Game Environment comprises a fully prepared vir-
tual world where all these elements are covered. The game
environment comes with a full set of game content items
like textures, sounds, various shaders and different static
and animated models.

Another aspect of the Game Environment is a tool chain
that comprises a world editor and a game object editor.
These tools can be used by non-technical team members to
verify and configure their content in the game environ-
ment. Configuring a game object can be understood as
assigning materials to models and setting material proper-
ties like textures etc. The tool chain is an indispensable
component when working in an inter disciplinary team.
With the tools provided, artistic team members can work
independently on their content items and know that it won't
give complications when they hand over their content to
the technical team members.

For all aspects of the Game Environment short and com-
prehensible tutorials are provided for students to find and
learn from. Having at your disposal all information on

developing a game, is a significant part of the whole proc-
ess of gaining experience.

5.4 Comparison to other Frameworks

Since the latest edition of the framework has not been ex-
tensively scrutinized and tested in practice, we will com-
pare the framework with existing solutions in use.

At TU Delft, there were (and are) some systems in use to
support the teaching of courses and projects. Among which
are BSCW [BHST96] and Blackboard [Bla08]. Both sys-
tems are mainly used for sharing documents and managing
their versions. The workflow of those system is to
download a document, edit it locally and upload a new
version on the system. This functionality is now offered by
the Wiki system.

To accommodate the need to share and merge code, a
Subversion is provided by the lab. Downside to this system
is that the whole team will only get one login, making it
impossible to track who did what, an essential part of team-
work.

A system for course monitoring, developed at the TU
Delft, for the lack of a good system, is called CPM (Com-
plete Project Monitoring) [CPM06]. Which allows teachers
to manage their course, students, milestones and deliver-
ables; something very comparable to the course manage-
ment and course monitoring of Cannibal Experience.

All systems above work perfectly for the job they were
designed to do. However, the biggest downside of the sys-
tems mentioned is that they are not all integrated. Cannibal
Experience does incorporate all functionality as one inte-
grated whole, in addition to providing the engine and
matching documentation and support infrastructure. This is
of course the advantage of a system explicitly designed for
the purpose of teaching games in a curriculum.

Another system that also integrated a number of fea-
tures, specifically aimed at education is Moodle [Moo07].
Downside of this system for games education is that the
teacher has to setup the infrastructure and modules to use,
which takes time and is not specifically aimed at team-
work. The advantage of such an approach is that it can be
used in a great variety of situations and courses. However,
there is no functionality to do planning, such as tickets,
milestones and a roadmap or pre-provided content and
materials for teaching a course, both essential for games
education.

6. Educational Impact

Since the first time the project was ran [BDZ03], a lot has
changed to the project and the curriculum. The games pro-
ject has been given a rather prominent role in the curricu-
lum as an integrator project, and its results are recognized
and used to promote the curriculum to new and existing
students. With the latest edition even establishing useful
relations between educational institutes for interdiscipli-
nary education.

We feel the framework has been an important factor in
enabling students to get the learning experience and results

J. Boers, J. Dobbe, R. Huijser & R. Bidarra / A Strong Cannibal Experience

© The Eurographics Association 2008.

they achieved. It allows them to focus on creating their
game using the examples and material provided. It also
facilitated the collaboration so that students could get the
most out of their teamwork. Without the results and ex-
perience achieved by the students, the project would not
have become this important.

7. Future work

Now that our framework has grown into a professional
product, time has come to use it in a wider range of pro-
jects and gain more feedback and knowledge in relation to
different types of projects. Incorporating this feedback and
knowledge will continue to improve the Cannibal Experi-
ence. We realize that as the computer industry, and the
games industry in particular, keep moving, also the solu-
tions will have to be continuously adapted.

Given the multidisciplinary nature of game develop-
ment, the framework could also be used to support courses
not directly related to creating a complete game. Interest is
rising from other professors to incorporate game develop-
ment in more specialized courses as well. For example a
course on artificial intelligence, or more advanced com-
puter graphics could also be taught using a game frame-
work. Parts of a preprogrammed game could be left out,
having the students fill in the blanks. The approach could
also easily be expanded into creative areas, where e.g. the
game has been programmed, but the content is missing.

8. Conclusions

The most relevant feature of the Cannibal framework de-
scribed here, from its early steps to its current commercial
Cannibal Experience, is that it has evolved from the accu-
mulated experience of years of practical application in a
rather successful educational project.

Our experience at Delft University of Technology con-
firms that a carefully designed development framework,
including all underlying technology, course material and
quality support, significantly determine the quality of a
project-based game development course. In addition, when
the teams in such projects have an interdisciplinary charac-
ter, providing an effective collaboration environment is
crucial for the success of team members. We believe that
the key to the huge success of our games project lies, to a
great extent, in the deployment of a professional working
environment specifically crafted for an educational setting.

Games are, and have always been, all about fun. In
pretty much the same way, our experience is that getting
students in the position of making games can be even more
fun. But the most fortunate of them are those who realize
how much they have learned in that process.

9. References

 [BAT04] BATES B. C# as a first language: a comparison
with C++. Journal of Computing Sciences in Colleges,
19 (3): 89-95.

[BBDH08a] BIDARRA R., BOERS J., DOBBE J., HUIJSER R.
The making of an interdisciplinary games project.
Journal of Game Development, 3(2). (forthcoming in
March 2008).

 [BBDH08b] BIDARRA R., BOERS J., DOBBE J., HUIJSER R.
Bringing a pioneer games project to the next level. In:
Proceedings of Third Annual Microsoft Academic
Days Conference on Game Development in Computer
Science Education, February 28-March 3, 2008.

[BDZ03] BIDARRA R., VAN DALEN R., VAN ZWIETEN J. A
Computer Graphics pioneer project on computer ga-
mes. Proceedings of CGME 2003 - Workshop on
Computer Graphics, Multimedia and Education, 8 Oc-
tober, Porto, Portugal, pp. 61-65

[BHST96] BENTLEY R. AND HORSTMANN T. SIKKEL K.,
TREVOR L. Supporting Collaborative Information Shar-
ing with the WWW: The BSCW Shared Workspace
System. In: Proceedings of Fifth International World
Wide Web Conference, O'Reilly & Associates, Inc.,
1996, pp. 63-73.

[Bla08] Blackboard Academic Suite.
http://www.blackboard.com/

[CL01] CUNNINGHAM W., LEUF B. The Wiki Way. Quick
Collaboration on the Web, Addison-Wesley, Boston
(2001)

[CPM06] https://cpm.ewi.tudelft.nl/

[MIL03] Miller T. Managed DirectX 9: Graphics and
Game Programming, Sams. Indianapolis, IN, USA
(2003)

[Moo07] Moodle. http://moodle.org/
[Pil04] PILATO M. Version Control With Subversion,

O'Reilly & Associates, Inc., Sebastopol, CA, USA
(2004)

[RF98] ROATHE L., FREGIEN C. CGDC '98 Roundtable
Report 1998.
http://www.gamasutra.com/features/gdc
_reports/cgdc_98/roathe_fregien.htm

[SC05] SERRANO N., CIORDIA I. Bugzilla, ITracker and
Other Bug Trackers, IEEE Software. 22(2): 11-13
(2005)

[Ogr07] OGRE Team. OGRE website.
http://www.ogre3d.org/

[Thi07] THIBAULT R.W. Wii Console.
http://www.uweb.ucsb.edu/~rwthibault/
Tech_Report.pdf

[Xna07] Microsoft Corporation. XNA Website.
http://msdn.microsoft.com/xna/

