
UNIVERSITY OF NAVARRA

SCHOOL OF ENGINEERING

DONOSTIA-SAN SEBASTIÁN

Study of Parallel Techniques

Applied to Surface Reconstruction

from Unorganized and Unoriented

Point Clouds

DISSERTATION
submitted for the

Degree of Doctor of Philosophy
of the University of Navarra by

Carlos Ignacio Buchart Izaguirre

December 13th, 2010

http://www.eg.org
http://diglib.eg.org

A mis abuelos:
Opa y Nanny
Pepe y Mima

Agradecimientos

El que da, no debe volver a acordarse;
pero el que recibe nunca debe olvidar

Proverbio hebreo

Los agradecimientos suelen ser la parte más dif́ıcil cuando se escribe la
memoria de la tesis. Por ejemplo, uno no encuentra el orden adecuado, y
no quiere dejar a nadie ni siquiera en segundo lugar; el cerebro se estruja a
más no poder recordando a todo aquél que nos echó una mano en la tesis
(. . .el que recibe nunca debe olvidar); ¡es que algunas veces uno deseaŕıa
poder usar un comod́ın como los empleados en las expresiones regulares
[a-zA-Z]+!

Primero que nada quisiera agradecer a mis directores de tesis, Diego y
Aiert, no sólo por el tiempo y esfuerzo que le han dedicado a este trabajo
(que también valoro enormemente), sino por el tiempo y esfuerzo que me
han dedicado a mı́, en mi formación como investigador y en aquellas horas
más dif́ıciles cuando las cosas parećıan no salir y siempre veńıan con un
buen consejo... o un Foster. ¡Gracias!

Mención honoŕıfica se la llevan mis padres (Francisco e Inés) y mi
hermana (Pul... ¡perdón! Titi), que, estando a miles de kilómetros de
distancia, han sabido darme siempre una frase de aliento, una llamada en
el momento oportuno (o no tan oportuno, pero el cariño es lo que cuenta).
¡Gracias!

A Jairo, porque entre los dos hemos sacado muchas partes de nuestras
tesis y proyectos, por no decir la cantidad de chistes (¿malos?) que tanto
me han hecho réır estos cuatro años. ¡Gracias!

También, y de una manera especial, a Alejo Avello, Jordi Viñolas y Luis

iii

iv

Matey. Muchas gracias por darme la oportunidad de desarrollar esta tesis
en el CEIT, en el Departamento de Mecánica, en el Área de Simulación.
A Ana Leiza y Begoña Bengoetxea, por su ayuda desde los primeŕısimos
contactos con el CEIT y en todas las gestiones que han ido surgiendo en
estos años. ¡Gracias!

A la Universidad de Navarra, por permitirme cursar mis estudios de
doctorado; al TECNUN, por la formación profesional, académica y humana,
y la ayuda de sus profesores y empleados en el desarrollo de esta tesis y en
mis años como doctorando. ¡Gracias!

Agradecer también, de forma conmutativa, a mis compañeros y
ex-compañeros de despacho, y del Departamento de Mecánica, todos (de
una u otra forma) han contribuido en el desarrollo de esta tesis (mérito por
soportarme en las mañanas incluido): Gaizka, Josune, Iker, Hugo, Maite,
Ángel, Luis U., Jaba, Óskar, Jokin, Iñaki G., Javi, Iñaki D., Aitor C.,
Goretti, Imanol H., Emilio, Yaiza, Sergio, Alberto, Ibon, Álvaro, Denis,
Mildred, Aitor R., Miguel, Dimas, Jorge Juan, Manolo, Imanol P., Jorge.
¡Gracias!

Estos años no hubiesen sido igual sin amigos de otros departamentos y
de fuera, que le han impreso un carácter “multidisciplinar” a este doctorado:
Nirko, Lorena, Jesús, Claudia, Wilfredo, Janelcy, José Manuel, Nacho,
Elena, Alfredo, Paloma, Fernando, Ioseba, Raúl, Manu, Héctor, Tomás,
Roćıo, Musikalis. ¡Gracias!

Para cerrar, y sin que el hecho de estar en el último párrafo implique
ningún tipo de orden cualitativo, muchas gracias a Patric, Jesús, José Luis,
Rober, Karmele, Paqui, Patxi, Josemi, Franklin, Enrique, Álvaro, Dani,
Héctor, Josetxo, Noelia, Marycarmen, por tantos pequeños (y grandes)
favores. ¡Gracias!

¡Ah! Por si se me olvida alguien: ¡muchas gracias [a-zA-Z]+! ;)

Abstract

Nowadays, digital representations of real objects are becoming bigger
as scanning processes are more accurate, so the time required for the
reconstruction of the scanned models is also increasing.

This thesis studies the application of parallel techniques in the surface
reconstruction problem, in order to improve the processing time required
to obtain the final mesh. It is shown how local interpolating triangulations
are suitable for global reconstruction, at the time that it is possible to
take advantage of the independent nature of these triangulations to design
highly efficient parallel methods.

A parallel surface reconstruction method is presented, based on local
Delaunay triangulations. The input points do not present any additional
information, such as normals, nor any known structure. This method has
been designed to be GPU friendly, and two implementations are presented.

To deal the inherent problems related to interpolating techniques (such
as noise, outliers and non-uniform distribution of points), a consolidation
process is studied and a parallel points projection operator is presented, as
well as its implementation in the GPU. This operator is combined with the
local triangulation method to obtain a better reconstruction.

This work also studies the possibility of using dynamic reconstruction
techniques in a parallel fashion. The method proposed looks for a better
interpretation and recovery of the shape and topology of the target model.

v

vi

Resumen

Hoy en d́ıa, las representaciones digitales de objetos reales se van haciendo
más grandes a medida que los procesos de escaneo son más precisos, por lo
que el tiempo requerido para la reconstrucción de los modelos escaneados
está también aumentando.

Esta tesis estudia la aplicación de técnicas paralelas al problema
de reconstrucción de superficies, con el objetivo de mejorar los tiempos
requeridos para obtener el mallado final. También se muestra cómo las
triangulaciones locales interpolantes son útiles en reconstrucciones globales,
y que es posible sacar partido de la naturaleza independiente de éstas para
diseñar métodos paralelos altamente eficientes.

Se presenta un método paralelo de reconstrucción de superficies, basado
en triangulaciones locales de Delaunay. Los puntos no están estructurados ni
tienen información adicional, como normales. Este método ha sido diseñado
teniendo en mente la GPU, y se presentan dos implementaciones.

Para contrarrestar los problemas inherentes a las técnicas interpolantes
(ruido, outliers y distribuciones no uniformes), se ha estudiado un proceso
de consolidación de puntos y se presenta un operador paralelo de proyección,
aśı como su implementación en la GPU. Este operador se ha combinado con
el método de triangulación local para obtener una mejor reconstrucción.

Este trabajo también estudia la posibilidad de usar técnicas dinámicas
de una forma paralela. El método propuesto busca una mejor interpretación
y captura de la forma y la topoloǵıa del modelo.

vii

viii

Contents

I Introduction 1

1 Introduction 3

1.1 Applications . 6

1.2 Data acquisition . 7

1.3 Objectives . 8

1.4 Dissertation organization 10

2 State of the art 11

2.1 Interpolating methods . 12

2.1.1 Delaunay triangulation 12

2.1.2 Local triangulations 14

2.2 Approximating methods . 16

2.3 Parallel triangulations . 18

2.3.1 Hardware accelerated algorithms 19

II Proposal 21

3 GPU Local Triangulation 23

3.1 Introduction . 24

3.2 Sampling criteria . 25

3.3 Description of the method 25

ix

x CONTENTS

3.3.1 Preprocess phase – Computing the k-NN 25

3.3.1.1 k-NN based on clustering techniques 26

3.3.1.2 k-NN using kd-trees 27

3.3.1.3 Final comments 27

3.3.2 Parallel triangulation 27

3.3.3 Phase 1 – Normal estimation 28

3.3.3.1 Normals orientation 30

3.3.4 Phase 2 – Projection 31

3.3.5 Phase 3 – Angle computation 32

3.3.6 Phase 4 – Radial sorting 33

3.3.7 Phase 5 – Local triangulation 33

3.3.7.1 2D validity test 34

3.3.7.2 Proof . 36

3.4 Implementation using shaders 37

3.4.1 Initial texture structures overview 38

3.4.2 Texture assembly . 41

3.4.3 Phase 1 – Normal estimation 41

3.4.4 Phases 2 and 3 – Projection and angle computation 42

3.4.5 Phase 4 – Radial sorting 42

3.4.6 Phase 5 – Local triangulation 44

3.5 Implementation using CUDA 45

3.5.1 Data structures . 46

3.5.2 Phase 4 – Radial sorting 48

3.5.3 Phase 5 – Local triangulation 48

3.6 Experiments and results . 48

3.6.1 CPU vs Shaders vs CUDA 50

3.6.2 Reconstruction results 53

3.6.3 Big models . 57

3.6.4 Comparison with an approximating method 58

3.6.5 Application in the medical field 61

3.6.6 Application in cultural heritage 61

3.7 Discussion . 64

CONTENTS xi

4 Parallel Weighted Locally Optimal Projection 65

4.1 Previous works . 65

4.1.1 Locally Optimal Projection Operator 66

4.1.2 Weighted Locally Optimal Projection Operator . . . 67

4.2 Parallel WLOP . 68

4.2.1 Implementation details 71

4.3 Experiments and results . 71

4.4 Discussion . 77

5 Hybrid surface reconstruction: PWLOP + GLT 79

5.1 Improving the input data set through points consolidation . 79

5.2 Results . 80

5.3 Discussion . 87

6 Study of multi-balloons reconstruction 89

6.1 Dynamic techniques . 89

6.1.1 Classic balloons . 91

6.2 Multi-balloons . 93

6.2.1 Scalar function fields 95

6.2.2 Evolution process . 96

6.2.2.1 Global and local fronts 96

6.2.2.2 Two-step evolution 98

6.2.2.3 Gradient modulation term: κi 99

6.2.2.4 Local adaptive remeshing 100

6.2.3 Topology change . 104

6.2.3.1 Genus . 104

6.2.3.2 Holes . 106

6.3 Experiments and results . 106

6.4 Discussion . 109

xii CONTENTS

III Conclusions 111

7 Conclusions and future work 113

7.1 Conclusions . 113

7.2 Future research lines . 115

IV Appendices 117

A GPGPU computing 119

A.1 Shaders . 120

A.2 CUDA . 122

A.2.1 CUDA Program Structure 123

A.2.2 Occupancy . 124

A.2.3 CUDA Memory Model 124

B Generated Publications 127

Index 129

References 131

List of Figures

1.1 Different point clouds . 3

1.2 Noisy set of points . 4

1.3 Ambiguities are commonly present in points from a scanned
surface . 4

1.4 Example of a points cloud extracted from a computer
tomography . 7

1.5 3dMface System, used in face scanning 8

1.6 Creaform REVscan laser scanner, used in reverse engineering 9

2.1 Voronoi diagrams and Delaunay triangulations 13

2.2 Comparison between different local triangulation methods . 15

2.3 Intersection configurations for Marching Cubes 18

2.4 Performance evolution comparison between CPUs and GPUs 19

3.1 Flow diagram of the proposed reconstruction algorithm . . 24

3.2 Normal estimation using PCA and wPCA 29

3.3 Minimal rotation . 31

3.4 The is valid function verifies if a point belongs to a partial
Voronoi region. 35

3.5 The validity test is local and must be performed several times
to obtain the local triangulation of a point 35

3.6 is valid never invalidates Voronoi neighbors 36

3.7 Flow diagram of the shaders implementation 38

3.8 TP and TN – Points and normals textures 39

xiii

xiv LIST OF FIGURES

3.9 TQ – Candidate points texture 40

3.10 TI – Index table texture . 41

3.11 Tα – Angles texture: similar to the TQ structure but replacing
the distance with the angle 42

3.12 TQ′ – Projected candidate points texture 42

3.13 The shaders implementation of GLT uses a ring to check all
the neighbors in parallel, discarding the invalid ones in each
iteration . 46

3.14 TR – Delaunay ring texture 46

3.15 Flow diagram of the CUDA implementation 47

3.16 Time comparison of the computation of the neighborhoods 51

3.17 Time comparison of the normal estimation phase 51

3.18 Time comparison of the angle computation and projection
phase . 51

3.19 Time comparison of the sorting phase 52

3.20 Time comparison of the local Delaunay validation 52

3.21 Time comparison of the local Delaunay triangulation 52

3.22 Comparison between the different proposed reconstruction
methods . 53

3.23 Horse model rendered along with its wireframe 54

3.24 Neck and chest detail of the Horse model 54

3.25 A synthetic model . 55

3.26 Running shoe along with its wireframe 55

3.27 Blade model . 56

3.28 Top view of the Blade model 56

3.29 Overall view of time consumption in the reconstruction of
the Asian Dragon model (3609K points) 57

3.30 Comparison with the Poisson reconstruction - Angel 59

3.31 Comparison with the Poisson reconstruction - Happy Buddha 59

3.32 Comparison with the Poisson reconstruction - Blade 60

3.33 Comparison with the Poisson reconstruction - Interior detail
of the Blade model . 60

3.34 Patients’ Heads models . 61

LIST OF FIGURES xv

3.35 Reconstruction of a Trophy 62

3.36 Reconstruction of a Theatre 63

3.37 Reconstruction of a Tower 63

4.1 Local support neighborhood vs. the extended LSN 69

4.2 Speed comparison between WLOP, eWLOP and PWLOP
with the Stanford Bunny . 72

4.3 Projection of the Happy Buddha model using a random
initial guess . 73

4.4 Projection of the Happy Buddha model using an
approximation from spatial subdivision techniques 74

4.5 Projection of different data sets using WLOP, eWLOP and
PWLOP . 75

4.6 The extended LSN computation times are common for both
the eWLOP and PWLOP 75

4.7 The computation of the extended LSN is the same for the
eWLOP and PWLOP . 76

4.8 Projection of the Happy Buddha model resetting the initial
data set . 76

5.1 Stanford Dragon . 81

5.2 Asian Dragon . 82

5.3 Happy Buddha . 82

5.4 Hand model reconstruction comparison 83

5.5 Hand model detail comparison 83

5.6 Noisy Foot with 20K points 84

5.7 Comparison of the hybrid PWLOP + GLT with the Poisson
reconstruction . 85

5.8 Results of the hybrid PWLOP + GLT reconstruction 86

5.9 Multi-resolution Happy Buddha using the hybrid approach 88

6.1 Competing fronts . 91

6.2 Level sets . 91

6.3 Flow diagram of the studied reconstruction using multiballoon 94

xvi LIST OF FIGURES

6.4 Multiple seeds placed in the Hand model 95

6.5 Multi-resolution grid used as satisfaction function 97

6.6 Slice of the Horse model’s distance function 97

6.7 Uniform vs. Local adaptive remeshing 102

6.8 Detail of the effects of the local adaptive remeshing 103

6.9 Topology change . 105

6.10 Rconstruction of a high-genus synthetic model 105

6.11 Multiple balloons evolving to reconstruct the Hand model . 107

6.12 Reconstruction of the Stanford Dragon model 107

6.13 Reconstruction stages for the Stanford Dragon model 108

6.14 Reconstruction of the Horse model 108

A.1 Thread hierarchy. 123

A.2 Memory hierarchy. 125

List of Tables

3.1 Total reconstruction time using three different
implementations . 50

3.2 Total reconstruction time of big models 57

3.3 Comparison with the Poisson reconstruction method 58

4.1 Speed comparison between WLOP, eWLOP and PWLOP
with the Happy Buddha model 75

5.1 Comparison between the proposed hybrid approach and the
Poisson reconstruction method 84

xvii

xviii LIST OF TABLES

List of Algorithms

3.1 Local Delaunay triangulation in 2D 34
3.2 Adapted Bitonic Merge Sort for multiple lists sorting 44
3.3 Local Delaunay triangulation algorithm adapted for its

implementation with shaders. 45
3.4 Local Delaunay Triangulation algorithm optimized for CUDA. 49
6.1 Overview of the algorithm proposed. 94
6.2 Local adaptive remeshing operator 102

xix

xx LIST OF ALGORITHMS

Part I

Introduction

Chapter 1

Introduction

Science brings men nearer to God

Louis Pasteur

Surface reconstruction from a set of points is an amazing field of work due
to the uncertainty nature of the problem. It is well known in computer
graphics. It has been formally defined as given a set of points P which are
sampled from a surface S in R3, construct a surface Ŝ so that the points of
P lie on Ŝ (Gopi et al., 2000), assuming there are neither outliers nor noisy
points, i.e., it defines an interpolating reconstruction. The resulting surface
Ŝ usually is a triangle mesh, a discrete representation of the real surface.
If noise is present in the set of points (P is near S), an approximating
reconstruction is needed in order to avoid interference caused by points out
of the surface. Some examples of input points can be seen in Figure 1.1
while Figure 1.2 shows a noisy dataset.

Figure 1.1: Different point clouds.

It is easy to see that surface reconstruction faces several problems:
incomplete data, inconsistencies, noise, data size, ambiguities (see Figure
1.3). It is a vast researching area, and many methods have been already

3

4 Chapter 1. Introduction

Figure 1.2: Noisy set of points.

proposed. Despite the work that has been done in this field, the correct
generation of a triangle mesh from a points cloud is still a study goal
trying to improve drawbacks current techniques have. Also, it is still an
open field because it is too complex, and probably impossible, to fully
recovery an unknown surface without previously assuming some kind of
information, such as normals’ direction and orientation, presence of holes or
sharp features, and the topology of the model. Almost every single existing
method relies in at least one parameter (for example, the sampling rate),
and is usually focused in a subset of problems, so it can better exploit the
implicit model’s characteristics in order to obtain a proper reconstruction.

Figure 1.3: Ambiguities are commonly present in points from a
scanned surface. For example, the top of this piece is a cylinder,
but in some zones there where no points scanned, leading to
several interpretations of the data.

Today’s improvements in acquisition methods and computers, along
with the demand for more detailed models, have led up to work, more

5

and more, with larger point clouds, increasing the reconstruction time and
memory requirements. This have lead to develop more efficient algorithms
in terms of memory and processing time.

Nowadays, the general evolution of the hardware and software is more
focused on the distribution of the processing load than in the increment of
the individual computing power. This tend can be found in many areas:
search engines, numerical simulation, cryptography, movies rendering, etc.,
where parallel algorithms have been developed to take advantage of the
modern hardware. For example, thanks to their high parallelization level, a
single graphic card usually have more processing power than a top-line
CPU. More on, since a few years ago it is common to find multi-core
processors in personal computers, as well as powerful graphic cards, so
it is no more a restricted field that requires high budgets. The parallel
programming would offer a way to solve the dataset size issue, since the
points processing can be split among different processors or computing
nodes, also reducing the individual memory requirements of each computer.

Talking about the graphics hardware field, in recent years that
technology has allowed developers to execute custom programs in the
GPU (Graphics Processing Unit), taking advantage of the huge processing
power it offers, in the so called GPGPU programming (General Purpose
GPU)1. Although by the time this thesis is being presented another GPU
surface reconstruction method has been proposed, the migration of any
algorithm to the GPU is not trivial and usually requires a high number
of modifications. At the same time, not every existing technique can be
implemented in parallel, and even less in the GPU, being necessary in such
cases, the creation of new processing paradigms. Finally, the GPU method
mentioned above corresponds to an approximating reconstruction and, as
it will be seen later, this work proposes an interpolating approach.

Another interesting and common fact about surface reconstruction is
that there is not always a need for real-time reconstruction. Usually, the
reconstruction is a preprocess for a later application, and then, does not
necessarily have to be a fully automatic and real-time process. The user can
guide the reconstruction or, as usually happens, can perform modifications
to the resulting surface to correct any problem (such as holes filling) or
include information the reconstruction process did not have access to (zones
that could not be scanned, or solve ambiguities in the set of points). In any

1For more information about GPGPU programming, please refer to Appendix A.

6 Chapter 1. Introduction

case, although real-time is not a must in these cases, efficiency should be
taken into account due to the size of data sets increases continually (most
of the models have hundred of thousand points or even a few million).

The present work is mainly focused in parallelization. It studies
the possibility of the design and implementation of parallel surface
reconstruction techniques, and especially in their implementation in graphic
hardware for a even higher speed boost. The vast processing power of
current GPUs makes them highly desirable targets in terms of execution
time of the reconstruction.

1.1 Applications

Surface reconstruction finds very useful applications in the industry in
the fields of reverse engineering and CAD (Computer Aided Design). In
this case, it is more common to use parametric surface patches instead of
polygonal meshes to represent the reconstructed object.

Another important area of use is in movies and videogames production,
where figures modeled in clay are digitalized to be later included into the
media content.

Also, it is widely used in cultural heritage allowing the digitalization of
sculptures, vases, historical sites, etc. for analysis, documentation or public
exposition. For example, the engrave of an old ceil may be digitalized for
its study in a more comfortable place and to avoid that its manipulation
may deteriorate the engrave. Some examples of surface reconstruction in
this field can be found in (Besora et al., 2008; Cano et al., 2008; Torres
et al., 2009a).

In medicine, surface reconstruction provides a practical way to visualize
certain kinds of tissues (Figure 1.4), as well as to extract an interaction
surface to be used in simulators. It is also possible, for example, to supplant
dental casts with 3D models of the teeth for dental prosthetics (bridges,
crowns, etc).

Section 1.2. Data acquisition 7

Figure 1.4: Example of a points cloud extracted from a computer
tomography.

1.2 Data acquisition

The process to convert a real surface into a digital representation starts
with the acquisition of a set of points that represents it. This process is
called surface scanning, and the tools that acquires the points, scanners.
Among the different kinds of scanners, some of the most common ones
include:

• Image-based scanners: these scanners consist of at least a couple
of calibrated cameras that capture the object from different points of
view. These images are used to compute a view point dependent 3D
set of points using a correspondence analysis, as described in (Jones,
1995). Figure 1.5 shows a face scanner.

• Time-of-flight scanners: by measuring the round-trip time of a
pulse of light emitted to the object it is possible to compute the
distance to it. Their main disadvantage is that they can detect only
one point in their view direction, so either the laser must be moved,
the object rotated or a mirror used to capture the back faces of an
object.

• Hand-held laser scanners: these scanners project a laser line or dot
onto the object, and the distance to it is measured by the scanner.
An example of these scanners is shown in Figure 1.6.

8 Chapter 1. Introduction

• Contact scanners: this kind of scanners probe the object through
physical touch and are very precise. Their main disadvantage is that
the object must be touched, and in some cases it is not possible or it
is not easy. Also, physical contact with the object may damage it.

Figure 1.5: 3dMface System, used in face scanning.

Finally, some other acquisition techniques include segmentation of
medical images, data from simulations and video processing. The latter
makes use of similar techniques to image based scanning, by replacing the
multi-camera sources with a multi-view approach (epipolar geometry) and
tracking 2D feature points along the video sequence taking advantage of the
temporal coherence (for more information about this kind of techniques,
please refer to (Sánchez et al., 2010)).

1.3 Objectives

As has been stated before, surface reconstruction is a vast research area
that has been addressed from different points of view, but that remains
open given the uncertain nature of the problem. Even more, some of the
most reliable methods proposed depend on additional data such as normal
orientation, that is not always available during the reconstruction process.
Surface reconstruction methods should be able to take advantage of the
additional information if it is present, but should not be dependent on it.

Additionally, the size of the point clouds is rapidly increasing, making

Section 1.3. Objectives 9

Figure 1.6: Creaform REVscan laser scanner, used in reverse
engineering.

necessary the design of fast methods that can handle such amount of data.
Parallel programming is presented as a very powerful solution. More on,
GPGPU programming has helped in recent years to a dramatic speed
increase in many fields. It is reasonable, then, to think that techniques
developed should be implementable in the GPU.

For all this, the main objective of this thesis is the study of parallel
techniques applied to the design of surface reconstruction algorithms
from unorganized and unoriented sets of points, and additionally, the
optimization of existing reconstruction supporting methods and the
implementation and acceleration of studied algorithms using commodity
graphic hardware.

The following specific objectives are intended to limit the scope of the
thesis and focus the contributions of the work:

• Input data: although many surface scanners exist, not every system
provides additional information from the digitalized object, so the
method should be able to work without it. The input data, then,
should consists in a set of points in 3D without any kind of structure
or additional information. Also, the number of parameters should be
as minimal as possible to make more flexible the use of the developed
methods in automatic processes.

• Noise tolerance: the methods studied should be robust against
noise. Given that some techniques are non-tolerant to noise by

10 Chapter 1. Introduction

their nature (e.g. interpolating techniques), it is convenient to study
auxiliary techniques that may help to overcome this limitation. Even
though, the goal is not to treat with high levels of noise.

• Scalability: as point clouds are becoming more and more large, the
methods studied should be able to scale over the time in order to be
useful even when the dimensionality of the datasets overpasses the
size of current models.

Finally, the hardware employed in this project is restricted to
commodity PCs and graphic cards of the same level. It is not pretended to
be a study of surface reconstruction on PC clusters, large computing farms
or specialized computers.

1.4 Dissertation organization

The rest of this memory is organized as follows. Chapter 2 reviews the
most important reconstruction techniques. Chapter 3 presents the study
of a surface reconstruction based on local Delaunay triangulations and its
implementation in the GPU. Chapter 4 discusses a projection operator for
points consolidation as well as a new parallel approach. This operator is
combined with the surface reconstruction method proposed; this hybrid
technique is described in Chaper 5. In Chapter 6 a different reconstruction
approach, based in multiple active contours, is studied. Experimental
results are shown at the end of each chapter. Finally, Chapter 7 shows
the conclusions of this thesis, and it also comments possible future lines of
work.

Chapter 2

State of the art

Science, my lad, is made up of mistakes,
but there are mistakes which it is useful to make,

because they lead little by little to the truth

Jules Verne

Surface reconstruction is an active research field, and many works have
been presented, which can be classified using different approaches1. On one
hand, if it is assumed that the points have no noise, i.e., they belong to the
surface, then it is sufficient to find a relationship among the points (their
connectivity) to reconstruct a discrete representation of the surface. These
kinds of techniques are called interpolating. On the other hand, if noise
or incomplete data is present, approximating techniques are required. The
latter usually rely on implicit functions to define a similar surface while
balancing outliers, noise and high details. Additionally, it is not uncommon
for many methods, to filter the point set as a preprocess step, in order to
improve it (removing outliers, for example). Also, some other techniques
exist, called dynamic techniques, but they are discussed in Chapter 6.

The rest of this section will describe some of the most important
works related to surface reconstruction, as well as a discussion on parallel
techniques and GPU methods. The third classification mentioned above is
commented separately in Section 6.1.

1For convenience, a classification similar to that employed in (Gopi et al., 2000) is
used.

11

12 Chapter 2. State of the art

2.1 Interpolating methods

Interpolating methods rely on points that effectively are on the original
surface. Although they are not robust against noise and outliers, the
quality of the reconstructed mesh is usually better than those generated by
approximating methods, given a noise free dataset. This quality represents
both triangle proportions, and fidelity to the target surface.

The main weakness of interpolating methods is the presence of noise
and outliers. It is interesting to note that isolate outliers are usually
discarded without any additional work given proper neighborhood sizes.
Sampling inaccuracies on the other hand, usually fall into the local support
of interpolating methods and are included in the reconstruction. Under
certain levels of noise, just a rough surface is obtained. In worse cases,
however, the reconstruction method may fail to create a consistent surface.

2.1.1 Delaunay triangulation

Maybe the most known and common interpolating technique is the
Delaunay triangulation, initially introduced by (Delaunay, 1934) (Figure
2.1). Given a set of points P in the d-dimensional Euclidean space, the
Delaunay triangulation DT (P) is such that no point p ∈ P is inside the
circum-hypersphere of any d-simplex2 in P . It is important to comment
that if the set of points P is in a 3-dimensional space, DT (P) is not a
surface but a tetrahedral mesh, so a post-process is required to extract the
on-surface triangles from the full triangulation. Unless explicitly mentioned,
the rest of this work assumes d = 3.

The DT (P) is also the dual of the Voronoi diagram of P ,
where consecutive nodes of the Voronoi diagram are connected in the
triangulation. The Voronoi region of a point p ∈ P is given by all points
that are nearer to p than to any other point of P (see Figure 2.1). This
property is often used to construct either the Delaunay triangulation or the
Voronoi diagram based on the other one.

Finally, the local triangulation of a point pi is defined as the set of
triangles that have pi as a vertex. Given the local Delaunay triangulations

2A d-simplex is the minimum object in a Ed, the d-dimensional analogue of a triangle
(which is the 2-simplex, for d = 2). A 3-simplex is, therefore, a tetrahedra.

Section 2.1. Interpolating methods 13

(LDT) of every point in P , the global triangulation can be constructed as
follows:

DT (P) =
⋃
pi∈P

LDT (pi) (2.1)

Figure 2.1: Voronoi diagrams and Delaunay triangulations are
duals.

A good example of Delaunay triangulations in surface reconstruction
is presented by (Attene and Spagnuolo, 2000). In this work, the Delaunay
tetrahedralization of the input points is constructed and then, by the use of
an Euclidean minimum spanning tree and a Gabriel graph3, the boundary
of the surface is obtained.

One of the most cited Delaunay based reconstructions is the Power
Crust method proposed by (Amenta et al., 2001). It constructs the Voronoi
diagram of the input points, and then extracts a polygonal mesh using the
inverse of the medial axis transform obtained from the Voronoi diagram.
The medial axis of an object is a tool for shape description and consists
in the closure of the locus of the centers of all maximal inscribed discs in
the target surface. The medial axis transform is the medial axis together

3A Gabriel graph is a subset of the Delaunay triangulation, where two points p, q ∈ P
are connected if the closed disc which diameter is the line segment pq contains no points
from P .

14 Chapter 2. State of the art

with the radius of the maximal inscribed circle center in each point on the
medial axis (Vermeer, 1994).

The Cocone algorithm (Amenta et al., 2000) also relies on Voronoi
regions for the reconstruction. It extracts the reconstructed surfaced by
filtering the triangulation as follows: for a sample point p ∈ P and a Voronoi
edge e in the Voronoi cell of p, if for the Voronoi cells adjacent to e have a
point x such that the vector px makes a right angle with the normal of p,
then the dual of the Voronoi cells is included in the reconstruction. Some
other improvements to this method have been presented, concretely the
Tight Cocone (Dey and Goswami, 2003), basically a hole-filling extension;
and the Robust Cocone (Dey and Goswami, 2006), that incorporates
tolerance against noisy inputs.

In (Allégre et al., 2007) a progressive method is shown, where the
data set is simplified at the time it is selective reconstructed using point
insertions and deletions in the Delaunay triangulation. At the end, the
resolution of the resulting mesh is locally adapted to satisfy the feature
sizes of the model.

2.1.2 Local triangulations

Previously mentioned techniques are based in global triangulations
algorithms, but (Linsen and Prautzsch, 2001) show that local triangulations
are also well suited for surface reconstruction and can lead to faster
algorithms, even more if the main purpose of the reconstruction is the
visualization of a polygonal mesh rather than its utilization in later
processing tasks. Assuming a well sampled surface, (Linsen and Prautzsch,
2001) construct a triangles fan around each point using its 6-neighborhood.

For example, assuming a dense sampling of the original object, (Gopi
et al., 2000) show that the neighborhood of p is the same as its projection
onto the tangent plane of p, given that the distance to p is maintained.
Based on this, a lower dimensional Delaunay triangulation is done in 2D,
resulting in a faster reconstruction than in 3D (as was previously mentioned,
the 3D Delaunay triangulation is composed of tetrahedra rather than
triangles). The final mesh is obtained by merging all individual fans.

Another technique, very similar to local triangulations, are the use
of advancing frontal techniques (AFT). An AFT starts with a minimal

Section 2.1. Interpolating methods 15

subset of the final reconstruction and expands its boundaries iteratively
covering the whole surface. Current methods based on advancing fronts
perform such iterations one point at a time (here their similarity to local
triangulations). For example, (Bernardini et al., 1999) start with a seed
triangle and adds subsequent triangles using a ball pivoted around the
edges of the boundaries of mesh, and (Crossno and Angel, 1999) use a
localized triangulation approach, called Spiraling Edge, in which a point
is not marked as finished until it is completely surrounded by triangles
(exceptions are boundary points).

Comparing the fan creation of these reconstruction methods, while the
three (Crossno and Angel, 1999), (Gopi et al., 2000) and (Linsen and
Prautzsch, 2001) triangulate over a radial sorted set of neighbors, they
differ in how this is done. The first two methods verify if each neighbor
is valid in the fan: (Crossno and Angel, 1999) perform a whole empty
circumsphere test (Figure 2.2(a)) and (Gopi et al., 2000) determine if they
are valid Delaunay neighbors on the tangent plane of the central point
(Figure 2.2(b)). On the other hand, (Linsen and Prautzsch, 2001) assume
some uniformity on the points cloud and directly add a small number of
neighbors as valid fan points (Figure 2.2(c)).

(a) (b) (c)

Figure 2.2: Comparison between three different local triangulation
methods: (a) (Crossno and Angel, 1999), (b) (Gopi et al., 2000),
(c) (Linsen and Prautzsch, 2001). New triangles are colored
in violet while the triangles created in previous step of the
correspondent method are shown in beige.

More recently, (Zhang et al., 2010) use a similar approach of
lower dimensional reconstruction, this time over patches larger than the
1-neighborhood of previously discussed methods; those patches are defined

16 Chapter 2. State of the art

as regions where point’s tangent planes have small variations.

2.2 Approximating methods

If either noise or outliers are present in the input data, interpolating
techniques fail to generate a correct reconstruction, because all the points
are taken into account for the triangulation, interpreting noise as fine details
of the target surface.

Approximating techniques tend to solve this issue at the cost of
losing detail. It is also true that many methods can achieve good quality
reconstructions, but usually incurring in a high memory consumption. In
this sense, local triangulations, such as the studied in the previous section,
can reduce their memory footprint by subdividing the reconstruction into
smaller blocks.

Among approximating reconstructions can be found many different
approaches, but most of them are based on the construction of an implicit
function I(x). This function is commonly represented as a scalar field
using spatial subdivision techniques, such as voxels or octrees. In this way,
the surface reconstruction is transformed into an iso-surface extraction
problem: most of the methods use functions such that Ŝ is defined by
I(x) = 0 (for example, if I(x) is a distance function). The robustness and
quality of these algorithms are determined by the volume generation and
the precision of the iso-surface when compared with the original surface,
i.e., the resolution of the implicit function.

One of the first methods presented in this area was the work of (Hoppe
et al., 1992). It computes a signed distance field from the points to their
tangent planes. Such planes are estimated from the local neighborhood
of each point using principal component analysis, and re-oriented using a
connectivity graph to consistently propagate a common orientation.

(Bajaj et al., 1995) use α-shapes to determine the signed distance
function. Given the Delaunay triangulation DT (P) of P , an α-shape is, as
a general idea, the subset of simplices of DT (P) smaller than the selected
value α. All the simplices that belong to the α-shape are marked as internal,
while the others are marked as external. With this space classification the
signed function is constructed.

Section 2.2. Approximating methods 17

(Ohtake et al., 2005) make use of weighted local shape functions in
an adaptive fashion to create a global approximation, and (Nagai et al.,
2009) follow a similar idea, introducing a Laplacian smoothing term based
on the diffusion of the gradient field. Alternatively, (Samozino et al., 2006)
center compactly supported radial basis functions in a filtered subset of the
Voronoi vertices of the input points.

Using the Voronoi diagram of the input points, (Alliez et al., 2007)
compute a tensor field and estimates from it the normals of the points. By
solving a generalized eigenvalue problem, it computes an implicit function
which gradients are most aligned with the principal axes of the tensor field.

Using a different approach, (Esteve et al., 2008) compute a piecewise
tricubic Bspline surface from the discrete membrane (a collection of
face-connected voxels that is derived from the points set). This algebraic
surface is iteratively adjusted to the discrete membrane, adjusting the
continuity between voxels and fitting the isosurface to the center of
hard-tagged voxels (that contain input points).

Several approximating techniques have been based on physical
phenomena. For example, (Jalba and Roerdink, 2006) aggregate points into
a grid and convert the non-empty cells into source points for a physical
simulation of heat flow, which is defined using the regularized-membrane
equation. This creates the scalar field that is later used to reconstruct the
target surface.

(Wang et al., 2005) propose the use of oriented charges to create the
signed distance function. The space containing the points set is subdivided
using an octree, and the charges are placed in the nodes of the neighborhood
of the samples. Such charges are linear local distance fields; to obtain
a global distance field, each charge is weighted by a Gaussian blending
function.

Finally, the Poisson reconstruction (Kazhdan et al., 2006) is probably
one of the best surface reconstruction methods widely available. It performs
a global reconstruction by solving a Poisson system. An adaptive solver
is used to adjust the precision of the solution near the surface. It also
shares some local fitting characteristics since, in order to create the adaptive
conditions, it defines locally supported functions on octree’s nodes. One
disadvantage of this method is that it relies on the correct orientation of
the points’ normals.

18 Chapter 2. State of the art

Among the iso-surface extraction methods, robust and parallel
approaches have been created, such as Marching Cubes (Lorensen and
Cline, 1987) and polygonizers (Bloomenthal, 1988; Gueziec and Hummel,
1995; Torres et al., 2009b). Marching Cubes determines the intersection
of an iso-surface with each voxel matching its topology with a list of
possible intersections (Figure 2.3), and uses it to generate a piecewise model
voxel by voxel. Many other iso-surface extraction works are based on this
approach, for example, (Raman and Wenger, 2008) developed an extension
for the Marching Cubes to avoid the creation of skinny triangles. Other
works proposed similar techniques that use alternative structures, such as
tetrahedra (Bloomenthal, 1988; Gueziec and Hummel, 1995) and octahedra
(Torres et al., 2009b).

Figure 2.3: Intersection configurations for Marching Cubes (Image
from (Favreau, 2010)).

2.3 Parallel triangulations

In general, not many parallel techniques have been developed, at least not
directly (there are several works that implement equation solvers in parallel,
for example).

One of the first parallel techniques presented is the DeWall
algorithm (Cignoni et al., 1993), a recursive divide-and-conquer Delaunay
triangulation in Ed where input points are spatially partitioned by an
hyperplane and triangulated recursively. Final meshes are joined merging
their boundaries using the partitioning simplex. Although it generates full
Delaunay triangulations and it is not specific for surface reconstruction, it
is a good example of a parallel approach.

Section 2.3. Parallel triangulations 19

Another work worth mentioning is presented in (Kohout and
Kolingerová, 2003). It constructs a Delaunay triangulation in E2 by
randomized incremental insertion of points. Starting with a triangle
containing all the input points, they are incrementally inserted in a parallel
fashion, subdividing the triangle where the points fall, and updating the
connectivity to preserve the circumcircle criterion. Each point insertion
locks a part of the triangulation during the subdivision phase, avoiding
inconsistencies due to concurrent access to a triangle that is being modified.

2.3.1 Hardware accelerated algorithms

In the last years, the processing power of graphic devices has been increasing
drastically faster compared to the evolution of CPUs, as can be seen in
Figure 2.4. This is mainly due to the high level of parallelism that a GPU
has (usually, a GPU has at least several tens of streaming processors, while
similar price-tagged CPUs only have two couples). Following this line, a
concerted effort is being put in the development of new algorithms and the
implementation of existing ones in graphic devices; this model is known as
GPGPU.

(a) Floating point operations per
second.

(b) Memory bandwith comparison.

Figure 2.4: Performance evolution comparison between CPUs and
GPUs (image from (NVIDIA, 2010)).

Several hardware-accelerated iso-surface visualization methods have
been proposed in the last years, but the hardware accelerated surface
reconstruction is still an open line of research. (Klein et al., 2004)
and (Kipfer and Westermann, 2005) implement the Marching Tetrahedra
algorithm in the GPU, with the difference that in the first work a full

20 Chapter 2. State of the art

indexed tetrahedral representation is given while the second only stores
the edges in order to decrease the amount of data sent to and processed
by the GPU. (Jalba and Roerdink, 2006) mention a GPU implementation
of the (Bloomenthal, 1988)’s implicit surface polygonizer. These works
have shown the GPU’s power to solve the surface reconstruction problem
using spatial subdivision methods, but no implementations for interpolating
approaches have been presented yet. One of the main drawbacks of
traditional AFT is their low parallelization level, due to repeated iterations
and the information needed from the current reconstructed mesh. On the
other hand, local triangulations are more suited for parallel work if a proper
data structure is given.

Finally, (Zhou et al., 2010) show a full GPU implementation of
the previously described Poisson method that directly visualize the
reconstructed surface, that achieves impressive reconstruction times of
nearly six frames per second for half-million points sets.

Part II

Proposal

Chapter 3

GPU Local Triangulation

Sometimes when you innovate, you make mistakes.
It is best to admit them quickly,

and get on with improving your other innovations

Steve Jobs

A synthesis of this chapter has been published in:

Buchart, C., Borro, D., and Amundarain, A. “A GPU interpolating
reconstruction from unorganized points”. In Posters Proceedings of
the SIGGRAPH 2007. San Diego, CA, USA. August 5-9, 2007.

Buchart, C., Borro, D., and Amundarain, A. “GPU Local
Triangulation: an interpolating surface reconstruction algorithm”.
Computer Graphics Forum, Vol. 27, N. 3, pp. 807–814. May, 2008.

Buchart, C., Amundarain, A., and Borro, D. 3-D surface geometry
and reconstruction: Developing concepts and applications, chapter
Hybrid surface reconstruction through points consolidation. IGI
Global. 2011. (Sent and under revision).

Examples of possible applications of this chapter in the medical field
have been presented in:

San Vicente, G., Buchart, C., Borro, D., and Celigüeta, J. T.
“Maxillofacial surgery simulation using a mass-spring model derived
from continuum and the scaled displacement method.” In Posters
Proceedings of Annual Conference of the International Society for
Computer Aided Surgery (ISCAS’08). Barcelona, Spain. June, 2008.

23

24 Chapter 3. GPU Local Triangulation

San Vicente, G., Buchart, C., Borro, D., and Celigüeta, J. T.
“Maxillofacial surgery simulation using a mass-spring model derived
from continuum and the scaled displacement method.” International
journal of computer assisted radiology and surgery, Vol. 4, N. 1, pp.
89–98. January, 2009.

Buchart, C., San Vicente, G., Amundarain, A., and Borro,
D. “Hybrid visualization for maxillofacial surgery planning and
simulation”. In Proceedings of the Information Visualization 2009
(IV’09), pp. 266–273. Barcelona, Spain. July 14-17, 2009.

3.1 Introduction

Local triangulations, especially local Delaunay triangulations (LDT), are
very suitable for parallelization since every point can be processed
independently of others. By taking advantage of this property and the high
parallelization level of modern graphic hardware, a new, highly efficient
reconstruction method from unorganized points has been developed in this
work, extending the Lower Dimensional Localized Delaunay Triangulation
of (Gopi et al., 2000). A general scheme of the proposal is shown in Figure
3.1 and it will be described in the following pages. The method has been
called GPU Local Triangulation, or GLT for short.

As an overview, given an unorganized data set P of n points, it involves,
for each point p ∈ P , the computation of the k-nearest neighbors in a radius
δ (Nbhd(p)), normal estimation, neighborhood projection onto the tangent
plane, radial sorting of projected points around the normal and the local
Delaunay triangulation itself. After all points have been processed, the final
mesh is assembled from the local triangle fans and normals are uniformly
oriented using a propagation based on the connectivity of the points.

Figure 3.1: Flow diagram of the proposed reconstruction
algorithm.

Section 3.2. Sampling criteria 25

The only assumption made about the input points is that the data is
well sampled, i.e., highly detailed surfaces can be reconstructed as long as
the sampling rate conforms with the sampling criteria exposed in Section
3.2. No additional information as topology, geometry or normals is required,
although this information can be incorporated in order to remove some
steps (for example, normals estimation and their later propagation).

This method has been implemented using two different approaches:
the first one makes use of shaders and the second one is implemented
using CUDA. As each implementation has its own characteristics and
issues to be solved, first the GLT will be described as a general algorithm
(implementation unaware), and then each implementation will be discussed.
Additionally, and mainly for comparison purposes, a CPU implementation
has also been developed.

3.2 Sampling criteria

The sampling criteria is based on the Nyquist-Shannon theorem1, such that
the maximum distance δ between two adjacent points must be, at the most,
half the distance between the two nearest folds of the surface. However, this
general criteria could be applied locally in any subset of the whole surface,
resulting in smooth transitions in the sampling rate. Anyway, if details (high
frequency zones) have to be reconstructed too, the same criteria must be
applied.

3.3 Description of the method

3.3.1 Preprocess phase – Computing the k-NN

In this stage, the k-nearest neighbors (k-NN) to each point p ∈ P
are obtained and they are represented as Nbhd(p)2. This problem is a
particular case of the overall neighborhood problem. k-NN is a well known

1The Nyquist-Shannon sampling theorem states that a sampled analog signal can be
reconstructed if the sampling rate exceeds 2B samples per second, where B is the highest
frequency in the signal, expressed in hertz.

2As a notation commentary, when talking about the GLT, it will refer indistinctly to
the Nbhd(p) as the neighbors of p or the candidate points of p.

26 Chapter 3. GPU Local Triangulation

problem in computer graphics, statistics, robotics and networking, but as its
computation is not the main objective of this work, just a brief explanation
is given (two good reviews of the existing techniques can be found in
(Friedman et al., 1977) and (Sankaranarayanan et al., 2006)).

In the present study, two different methods have been used to compute
the k-NN of the input points set (either using clustering or kd-trees). k-NN
is a quadratic problem, and the size of data could be very high, so the
election of a good method is essential for the good performance of the
overall algorithm.

The value of k depends mainly on how uniformly sampled the dataset
is; the local sampling rate is only important if there are abrupt changes of
density. Empirically, it was set k = 32 for almost all the tests. Although k
can take any positive value, the GPU data structure for candidate points
employed in the shaders implementation uses a power-of-two neighborhood
size (see Section 3.4 for further explanation).

Finally, to avoid the selection of points in opposite sheets of the surface,
the neighborhood is restricted to the δ-vicinity of p. However, if multiple
sampling rates are present, the size must be set to the maximum sampling
rate (the sampling criteria guarantees that there are enough points nearer
to avoid a wrong triangulation). If the correct orientation of normals is
given, it may be also included to remove opposite points.

3.3.1.1 k-NN based on clustering techniques

The first method implemented is based on the assumption of a regular
sampling rate. It applies a clustering division to reduce the searching set.
The bounding box space of the data set is divided in cells of dimension
δ3 to reduce the size of the problem. For each point p it performs a full
circumsphere test against the points contained in its cell and in adjacent
ones. All the points which fall into the δ-sphere are inserted in a reversed
priority queue (where the first point in the queue is the farthest from p
among the k nearest neighbors). This priority queue efficiently sorts new
neighbors on-the-fly, avoiding the insertion into the queue of points that are
not near enough. Additionally, the priority queue is fixed to a maximum of
k elements.

Section 3.3. Description of the method 27

3.3.1.2 k-NN using kd-trees3

The second method used is based on kd-trees (Friedman et al., 1977). The
kd-tree is a generalization of the binary tree, where each node represents
a subset of the points and a partitioning of it (the root is unpartitioned
and contains all the points). This partitioning is done using orthogonal
alternating planes to subdivide the space; all the points belonging to the
same side of the dividing plane will be found in the same sub-tree. Leaves
are not divided and contain a single point.

A full explanation of how to compute the nearest neighbors to a
point using kd-trees falls beyond the scope of this work; for a proper
discussion about this topic please refer to (Bentley, 1990). In this sense,
a publicly available implementation of k̄-NN using kd-trees, called ANN
(approximating nearest neighbors), was used in this work (Mount and Arya,
2010).

3.3.1.3 Final comments

At the beginning of the development of the proposed GLT method, the
computation of the k-NN of P used a priority queue driven search.
Nevertheless, it was found that the utilization of the ANN library resulted
in a performance boost of 75% of the execution time, on average. Given
this huge improvement, priority queues were completely removed from
the implementation, remaining only as an example of alternative k-NN
methods. This difference in speed is mainly due to the brute force nature
of the first approach; even when the problem’s domain is reduced as much
as possible, it is still necessary to compute the distance to many points, in
comparison to a kd-tree search.

3.3.2 Parallel triangulation

As was previously mentioned in Section 2.1.2, local triangulations are
independent point to point. Based on this property, the presented method
performs parallel triangulations over each point. Following stages will be

3To avoid confusion, in this section the term k will be used to refer the dimensionality
of the kd-tree (e.g., k = 3 for point sets in <3) rather than the size of the search space,
which will be called k̄ only in this section.

28 Chapter 3. GPU Local Triangulation

referred to a single point p ∈ P , and its neighborhood Q = {qj ∈ Nbhd (p)},
such that q0 is the nearest neighbor of p. It is understood that these stages
are applied to every single point of P to get the final reconstruction.

3.3.3 Phase 1 – Normal estimation

The input data is usually a set of unorganized points but additional
information is assumed in many proposals. Thereby, (Crossno and Angel,
1999) make use of a wide set of information: normals, the correct
neighborhood of each point and point kind, and (Bernardini et al., 1999)
and (Kazhdan et al., 2006) assume the presence of an oriented set of
points. Although this information is very useful, it is not generated by
many acquisition techniques.

Several methods to estimate normals from point clouds have been
proposed, but particularly useful in interpolating methods are those
explained by (Hoppe et al., 1992) and (Gopi et al., 2000). As an overview,
the first method uses principal component analysis (PCA) and the later sees
the problem as a singular value decomposition problem. Although both are
quite different approaches, in the end, they are equivalent (Gopi et al.,
2000). Nevertheless it has been seen that the (Hoppe et al., 1992) proposal
is easier to implement and solve, so it is the one used in this work.

Given a neighborhood Q, the tangent plane T of p (and therefore its
normal n) may be estimated as the least squares best fitting plane to Q,
minimizing −v>j n, where vj = qj − p:

min
n

∑
qj∈Q

(
−v>j n

)2
= min

n

∑
qj∈Q

((
−v>j n

)(
−v>j n

))
= min

n

∑
qj∈Q

((
−n>vj

)(
−v>j n

))
= min

n

∑
qj∈Q

(
n>
(
vjv

>
j

)
n
)

= min
n

n>

∑
qj∈Q

(
vjv

>
j

)n

= min
n

n>CV n

(3.1)

Section 3.3. Description of the method 29

where CV is the following covariance matrix

CV =
∑
qj∈Q

vjv
>
j (3.2)

As explained above, PCA is used to estimate n. Let λ1 > λ2 > λ3 be
the eigenvalues of CV associated with eigenvectors v1,v2,v3, then n can
be approximated by either v3 or −v3 (orientation is not a requirement
in this stage of the reconstruction). To compute the eigenvectors of
CV , the Deflation method (Press et al., 2007) was employed, given its
implementation in the GPU is efficient.

In this work, a variation of the method of (Hoppe et al., 1992) was
employed, using weighted PCA (wPCA) instead (Pauly et al., 2002). In
this case, the only change is the computation of the covariance matrix:

CV =
∑
qj∈Q

θ (‖vj‖)
(
vjv

>
j

)
(3.3)

where θ(r) is the same weight function used in Section 4.1.2 (see Equation
4.4). Figure 3.2 illustrates the results of using PCA and wPCA.

Figure 3.2: Illustration of normal estimation using PCA (left) and
wPCA (right). The weighting function, showed in blue, regulates
the influence of the farthest points.

The choice of this method over others is justified given it uses a 3 × 3
matrix, a native datatype on GPUs. Another option is the equivalent
estimator of (Gopi et al., 2000), but it needs a 3 × k matrix, so its
implementation in the GPU would be harder and less efficient.

Normals are not only used in the visualization stage, as an output
of the algorithm, but they are required to project and sort candidate

30 Chapter 3. GPU Local Triangulation

points for triangulation, then if the normal estimation is not precise enough
later steps will produce a wrong triangulation, i.e., numerical errors could
become a major problem in this process. During the normal estimation, the
smallest eigenvalue is very susceptible to errors due to hardware precision
and numerical errors. Given that the Deflation method must first compute
the two higher eigenvalues and their eigenvectors to obtain the third one,
rounding errors may become a problem (as also mentioned in (Press et al.,
2007)). To solve this issue, the tangent plane T is estimated instead of the
normal, using the eigenvectors associated with the two highest eigenvalues;
in this way, the error propagation of the last eigenvector is reduced. The
normal is obtained from this tangent plane using the cross product of the
two eigenvectors.

3.3.3.1 Normals orientation

Normals estimated in this phase do not necessarily have a correct
orientation (some of them may face the model inwards). Some methods
rely on this orientation, usually because it is used to label zones as interior
or exterior; just to mention a couple: the work of (Hoppe et al., 1992) and
the Poisson method (Kazhdan et al., 2006).

To perform the normals unification it is common to take a normal as
correct and then use some kind of propagation. For example, (Hoppe et al.,
1992) treat the orientation problem as a spanning tree problem where the
graph’s vertices are the input points, and the connectivity is given by the
triangulation. An arbitrary point is taken as to have the right normal and
then it is propagated through the minimum spanning tree from vertex i to
vertex j: if n>i nj < 0 then the normal nj is reversed. If the whole orientation
is wrong (normals are pointing inward at the model), then it is enough to
reverse all the normals. Methods that rely on normal orientation usually
propagate it before entering the reconstruction phase itself. The rest of
the works may incorporate this task in any moment of the reconstruction
pipeline, although it is common to leave it as a post-process.

In this work, however, normals orientation is not a problem during the
computation of triangle fans; the local Delaunay triangulation is the same
regardless of the normal orientation, except for points ordering. Depending
on the uses of the reconstructed model, incorrectly oriented normals and
triangles may have a negative repercussion. For example, if the goal of

Section 3.3. Description of the method 31

the reconstruction is to create inner/outer zones based on the boundary
representation of the model, the orientation of the normal is important. On
the other hand, if the surface is only needed in the visualization mainstream,
it may be possible to use a double-face illumination, making unnecessary
a normal post-processing. Moreover, normal propagation is not a parallel
task, so, in case it is needed, it is better to perform the orientation correction
at the end of the reconstruction.

3.3.4 Phase 2 – Projection

Following (Gopi et al., 2000), GLT maps Nbhd(p) onto the tangent plane
T . The set of projected points Q′ = {q′j} is given by the minimal rotation of

each vj onto the plane defined by vj and n such that
(
q′j − p

)>
n = 0, i.e., q′j

relies on T (see Figure 3.3). In order to reduce the number of operations to
be executed in the GPU this minimal rotation is computed as a projection
onto T :

q′j = p+
q̂j − p
‖q̂j − p‖

‖vj‖ (3.4)

where Q̂ = {q̂j} is the orthogonal projection of qj onto T :

q̂j = qj −
(
n>vj

)
n (3.5)

Figure 3.3: The minimal rotation can be expressed as a projection.

32 Chapter 3. GPU Local Triangulation

3.3.5 Phase 3 – Angle computation

In this section, the angle αj between each projected neighbor q′j and q′0,
with center in p is computed. The neighborhood of p must be sorted in a
ring fashion in order to construct the Delaunay triangulation; this angle
will be used later to sort the neighborhood. The computation of the angle
is as follows:

αj = arccos
(
v′0
>v′j

)
v′j = q′j − p

(3.6)

To deal with the cosine’s symmetry about π, it is enough to see in which
side the point v′j lies with respect to the plane formed by v0 and n. So, let

m = n×v0; then, if the dot product d = v′j
>m is negative set αj = 2π−αj

(Crossno and Angel, 1999), so αj ∈ [0, 2π). As this angle only will be used
later for sorting the neighborhood, the arccosine has been eliminated from
Equation 3.6 to reduce the cost of this calculation. To avoid confusion in
the notation, a new notation is used to represent this new angular position:
ᾱj = cos(αj). The symmetry rotation when d is negative has also been
modified to ᾱj = −2− cos(αj), so ᾱj ∈ (−3, 1], where 1 is equivalent to the
smallest angle. To summarize, the computation of ᾱj is finally

ᾱj =

{
v′0
>v′j m>vj > 0

−2− v′0
>v′j m>vj < 0

}
(3.7)

When implementing these two phases (projection and angle
computation), it can be realized that combining them into a single
phase leads to both mathematical and implementation simplifications. For
example, v′j can be expressed as

v′j = q′j − p =
q̂j − p
‖q̂j − p‖

‖p− qj‖ (3.8)

so Equation 3.4 can be simplified:

q′j = p+ v′j (3.9)

Section 3.3. Description of the method 33

3.3.6 Phase 4 – Radial sorting

The Delaunay local triangulation first requires a sorted set of points, more
specifically radial sorted : starting at the nearest projected neighbor q′0 of p,
radial sorting creates a ring of consecutive points around p, with sorting key
ᾱj . No further explanations will be given in this section, since the sorting
method employed is highly dependent on the implementation.

3.3.7 Phase 5 – Local triangulation

The triangulation step is derived from the Lower Dimensional Localized
Delaunay Triangulation algorithm presented by (Gopi et al., 2000). This
verifies if each candidate point q′j ∈ Q′ remains as a valid Delaunay neighbor
when compared with q′j−1 and q′j+1. If it does it continues with the next
point, otherwise it is removed and backtracks to verify the validity of

the triplet
〈
q′j−2, q

′
j−1, q

′
j+1

〉
. When no points are marked as invalid, the

local Delaunay triangulation comprises all the remaining valid points. As
candidate points are sorted by angle, and therefore in a cyclic way, any
neighbor can be chosen as a starting point. As the nearest neighbor is
always a Delaunay neighbor, the process starts with it (that is the reason
why q′0 was chosen to be the nearest point to p). In addition, it is used as a
stop condition for the backtracking. It is important to remark that all these
computations are done using the projected neighbors of p from Phase 2,
thus, it is a 2D Delaunay triangulation; when projected points are replaced
with the original ones, then it becomes the surface reconstruction in 3D.

Note that, even when the authors of this method do not comment
the implementation, it is reasonable to assume that it is not a recursive
method but an iterative backtracking one. In this sense, in this work an
iterative version of the triangulation was developed (see Algorithm 3.1, the
is valid mentioned is the one explained in Section 3.3.7.1). In this design,
an auxiliary ring structure R = {rj} , j ∈ [0,m] ,m = |Q′| is used. Each
element of R corresponds with a projected neighbor of p (except for the
last element, rm that is a copy of the first r0, closing the ring).

34 Chapter 3. GPU Local Triangulation

Algorithm 3.1 Local Delaunay triangulation in 2D

1: function local 2D Delaunay(p,m,R)
2: j ← 1
3: while j < m do
4: if is valid(p, 〈rj−1, rj , rj+1〉) = false then
5: remove the j-th element from R
6: m← m− 1
7: if j > 0 then
8: j ← j − 1
9: end if

10: else
11: j ← j + 1
12: end if
13: end while
14: end function

3.3.7.1 2D validity test

The validity test actually determines if q′i belongs to a partial Voronoi
region of p. As was explained in Section 2.1.1, Delaunay triangulations and
Voronoi diagrams are duals, i.e., either of them can be computed from the
other one.

As a notation comment, in both this and the following section, as well
as in the correspondent sections in the shader and CUDA implementations,
the symbols used for projected neighbors will be changed as explained
in the next paragraph, in order to make the text easier to read and to
avoid confusion. This is because the validity test has a very local scope
regarding the neighborhood of p (they only “see” points). In the rest of
this manuscript the notation will be the same until now.

Given three consecutive projected neighbors A = {ak} , k ∈ {1, 2, 3},
the function is valid(p,A) verifies if a2 remains in the Voronoi region of
the points 〈p, a1, a2, a3〉. Define bk = ak − p and ok = p+ bk/2. Then, let b̄k
be the line perpendicular to bk that passes through ok, i.e., b̄k is a Voronoi
edge. Also, let s be the intersection point of the lines that go through o1 and
o3, with directions b̄1 and b̄3, respectively. If the projection of s onto b2 lies in
the region between p and o2, then s is a possible Voronoi vertex and a2 is not
a Delaunay neighbor of p (see Figure 3.4). It is important to note that this

Section 3.3. Description of the method 35

test only determines if a point is not a Voronoi neighbor of p, but if the point
passes the test, it is not guaranteed that it is connected to p in the Delaunay
triangulation. It comes from the fact that three invalid consecutive points
may result in a valid local region but may not be necessarily in the final
triangulation (see Figure 3.5 for an example); this is solved by repeating the
test several times only with the updated valid neighborhood, as proposed
by (Gopi et al., 2000).

Figure 3.4: The is valid function verifies if a point belongs to a
partial Voronoi region.

Figure 3.5: The validity test is local and must be performed several
times to obtain the local triangulation of a point. In this figure, the
three gray candidates will not fail the validity test of the central
red point, but when checked with the dark neighbors they will be
discarded.

In the next section, a mathematical proof about the validity of the
method is provided. It also states that it does not reject valid points, which
will allow the development of more GPU efficient versions of Algorithm 3.1.

36 Chapter 3. GPU Local Triangulation

3.3.7.2 Proof

In the local region defined by p and A, the vertices of the partial Voronoi
diagram are defined by the intersections of the perpendicular bisectors of
consecutive neighbors. If the function returns a false value, it means
that a Voronoi edge nearer to p than a2 exists, discarding a2 as a Voronoi
neighbor of p. It will now be proved that is valid will never invalidate an
actual Voronoi neighbor of p.

Figure 3.6: is valid never invalidates Voronoi neighbors.

Let’s change the local coordinate system as illustrated in Figure 3.6, so
that b2 lies on the positive Y-semiaxis, a1 on its left and a3 on its right (if
both a1 and a3 lie on the same side of Y , a2 is on a surface boundary and
must be included in the triangulation). Now, if a2 is a Voronoi neighbor of
p, then a Voronoi edge ē must exist and is limited by points l0 and r0, which
are the intersections of the perpendicular bisectors of b̄1 and b̄2, and b̄2 and
b̄3, respectively (ē lies on b̄2). It is clear that l0 is the farthest intersection
to the right of perpendicular bisectors of the left side, and r0 is the farthest
intersection to the left of the right side, making rx0 > lx0 for any right and
left intersections. Let αl and αr be the angle of b1 and b3, respectively, with
αr ∈ (−π/2, π/2) and αl ∈ (π/2, 3π/2). Three possible scenarios exist:

• b1 and b3 lie on the same line, i.e. αl−αr = π. In this case, b̄1 and b̄3
do not intersect and a2 is not invalidated.

• αl − αr < π, then the intersection point s lies on the positive
Y-semiaxis. As stated before, rx0 > lx0 means that s is above ē, thus

Section 3.4. Implementation using shaders 37

a2 is not invalidated.

• Finally, if αl − αr > π it means that the intersection of b̄1 and b̄3 lies
on the negative Y-semiaxis, following that a2 is not invalidated either.

From this, the backtracking method proposed by (Gopi et al., 2000)
(and therefore the proposed implementation described in Algorithm 3.1)
can be substituted by algorithms that dot not rely on the validation
order, allowing the parallelization of each validation, as well as GPU
implementations as described in Sections 3.4.6 and 3.5.3.

As was mentioned before, the following sections will discuss two
different GPU implementations of GLT. The first one uses shaders and
it presents more challenges since it has more restrictions from hardware,
but it was the only possible implementation available for several years. The
second implementation is done using CUDA, a very recent architecture that
is more flexible in terms of similarity to traditional programming languages.

3.4 Implementation using shaders

When using shaders, high amounts of data must be stored in textures in
order to be accessible by the GPU. One problem here is that textures are
not very flexible in how the data can be stored in them; they are grids
with no more than four elements in each cell, and all the elements must
be of the same datatype. Textures also present size restrictions (usually,
the maximum size admitted is 4096 × 4096 texels). To solve this issue,
a divide-and-conquer strategy is used, splitting the input points into K
smaller and equal datasets called passes. The size of each pass is denoted
by n′4. Passes are stored in textures and transferred to the graphic hardware
for their processing using fragment shaders. Although it is a similar strategy
to the one used by (Cignoni et al., 1993), GLT does not perform a spacial
division of the points but may use any points ordering, for example, the
storing order of the dataset, which also leads to a faster initialization. In
addition, this scheme would allow an easy implementation of the method

4Actually, the last pass may be smaller due to internal fragmentation, but including
this fact into the discussion and using a proper notation for it would only make it more
difficult to read. As passes are independent it will be assumed that n′ represents the size
of the current pass.

38 Chapter 3. GPU Local Triangulation

on multi-GPU architectures because passes are completely independent of
each other. Figure 3.7 shows the workflow for this implementation.

Figure 3.7: Flow diagram of the shaders implementation.

3.4.1 Initial texture structures overview

Before detailing the implementation of each stage, the base data structures
used in all of them will be shortly described. Textures used only in a
particular stage will be described in their respective section.

As mentioned in Section A.1, a fragment shader is not able to write to a
random position, only in the same position of the fragment it is processing.
This means that the data structures condition the way fragment shaders
can process them. GLT performs two kinds of data manipulation: one is
orientated to obtain points information such as the normal, the other one
works with each candidate point individually. Therefore, data structures
must be designed to fulfill these two methodologies: per-point processing
(where a fragment represents information about a point) and per-neighbor
processing (where a fragment represents information about a neighbor or

Section 3.4. Implementation using shaders 39

candidate point).

Although points are processed in several passes, information about
many additional points may be required (e.g., points out of the current
pass may be neighbors of others belonging to it). To simplify the design of
the GLT, all the points are stored in a single texture called TP . This texture
uses a RGB format to store the XYZ coordinates of the points. Normals are
stored in a similar texture (TN), and it is updated pass by pass after each
normal estimation step. In the current implementation, these two textures
are global and shared among all the steps of the algorithm.

Access to the points texture is done by index, not by texture coordinate,
since it is easier to store a single value (the index) than two (corresponding
U and V coordinates). Equation 3.10 shows the conversion from index to
texture coordinates

U = i mod height
V = bi/widthc (3.10)

where width and height are the dimensions of the texture. To make the
design of the conversion function easier, the texture employed is square. To
minimize the memory required to store, the size of the texture is computed
as shown in Equation 3.11.

size(TP) =
⌈
2log2(

√
n)+1

⌉
(3.11)

Figure 3.8: TP – Points texture. The normals texture TN has an
identical structure.

Once the points are stored, the neighborhoods of points that are
processed in a pass must also be uploaded to the graphic memory. To reduce

40 Chapter 3. GPU Local Triangulation

the structure complexity and satisfy the power-of-two size requirement of
the Bitonic Merge Sort (Section 3.4.5), the size of each neighbor structure
(k) is set to a power-of-two, although all the neighborhoods are bounded
to k− 1 points because the nearest point is inserted twice. The texture for
the candidate points is called TQ and presents a per-neighbor processing
scheme. The whole neighborhood of a point is stored row-by-row, avoiding
the data of a single neighborhood to be split in different V texture
coordinates; the goal is to reduce shaders complexity using the index of
a candidate point as an offset in the U coordinate. Each group is formed
by the m neighbors of p sorted by its distance to p, plus the nearest
point duplicated at the end to close the ring needed by the triangulation
algorithm (see section 3.3.7); if m < k − 1, the group is completed with
invalid neighbors that will be discarded by the following steps (a special
value is assigned to identify them). Each candidate point packs in the R
the square distance to p. The other three GBA components are its index in
TP , its relative position in the neighborhood and m.

Figure 3.9: TQ – Candidate points texture: squared distance to
center, the neighbor, its index and the neighborhood size.

There is another texture, called TI (Figure 3.10), that stores all the
points of the pass and that is used as an index table to locate the neighbors
of p in TQ. It is employed as a common source by phases that require
per-point processing. The structure consists of the point reference in TP ,
the initial and final U coordinates in TQ and its V position, packed in a
RGBA format.

The size of TQ is mQ ×mQ, where mQ is a multiple of k (non-square
textures can be used, as far as the horizontal dimension meets the previous
statement). On the other hand, TI ’s size is fixed to nP × nP , where n2

P is
the nearest integer to the number of points in the pass. As can be seen, a
couple of fragmentation problems appear: the first can be found in either

Section 3.4. Implementation using shaders 41

Figure 3.10: TI – Index table texture: central point, the beginning
and end of the candidate points block, and its row.

TQ or TI , where it was preferred to fill completely the candidate points
since it has more size restrictions. The second is presented in the last pass
where, based in the previous decision, TQ would lose on average half of its
space. A small mQ minimizes this loss, but increases the number of passes
and memory required by the method. After that, and due to the textures
size restriction of 4096 × 4096, mQ was fixed to 512 for the experiments,
given that it balances all previous factors very well.

3.4.2 Texture assembly

In this step, the neighborhood of the points belonging to the current pass
are computed, and the base data structures TQ and TI are assembled and
transferred to the GPU. If a parallel system (multi-GPU architectures,
clusters) is used, it would only be necessary to make copies of the input
points and assign a set of passes to each node.

3.4.3 Phase 1 – Normal estimation

Given that the result is a per-input-point value, this shader makes use of
the TI texture as input fragments and reads Nbhd(p) from TQ. The output
then, has the same size of TI and it has a normal for each point of the pass,
which is copied to the normal texture TN before going to the following step.

As an interesting remark, the normal of a given point is only needed
by such a point, so there is no need to compute all the normals before
proceeding to the next stage; it can be done pass by pass.

42 Chapter 3. GPU Local Triangulation

3.4.4 Phases 2 and 3 – Projection and angle computation

In this stage, rather than perform multiple passes to process each neighbor
using the pass points (as if using the read scheme of normal estimation), the
candidate points texture TQ is employed to perform this work in parallel.
As a result, two additional textures are generated: Tα which has a similar
structure of TQ but with the angle stored in the place of the distance (Figure
3.11), and the other with the projected points (TQ′ , see Figure 3.12). As
will be mentioned in section 3.3.7, the algorithm needs a candidate points
ring for each local triangulation, so it makes a copy of the nearest point p0

at the end of the candidate points list to close the ring, since it is always a
neighbor of p in the final mesh.

Figure 3.11: Tα – Angles texture: similar to the TQ structure but
replacing the distance with the angle.

Figure 3.12: TQ′ – Projected candidate points texture.

3.4.5 Phase 4 – Radial sorting

Neighbors are then sorted by angle in the graphic memory using a modified
version of the GPU Bitonic Merge Sort algorithm (Batcher, 1968; Buck and

Section 3.4. Implementation using shaders 43

Purcell, 2004), where instead of a single big block of data, it sorts many
small, fixed size blocks.

The Bitonic Merge algorithm sorts data sets of n elements, where n is
a power-of-two (do not confuse this n with the cardinality of P). The data
structure meets this criteria (k is a power-of-two) but not necessarily the
number of neighbors of each point. As mentioned before in Section 3.4.1,
invalid points are inserted to complete the required number of points. For a
correct sorting, such false neighbors must remain at the end of the list, so a
big angular position α̃ (fixed to −1000.0 in this work) is used. An additional
problem is that there could be cases where a point is very close in angle
to the first or last point (which are the same), then, to avoid numerical
errors and to guarantee a correct sorting, the angular position of the first
and last (the same) neighbors are not computed, but are fixed to ᾱ0 = 2
and ᾱm = α̃/2 to ensure they remain at the beginning and the end of the
valid candidate points, respectively. Any other point is inserted at texture
assembly time, but special angles are assigned during the angle computing.

The original GPU implementation of the Bitonic Merge proposed by
(Buck and Purcell, 2004) sorts a single array of data stored in a 2D
texture. GLT must sort many lists in each pass, but creating copies of each
neighborhood and sorting them one by one is very inefficient. To avoid a
loss of the parallelization level, all the neighborhood must be sorted directly
on their texture.

In order to solve this issue, GLT treats the multiple lists problem as
if it were one. Taking advantage of the single row packing of TQ texture,
and the fact that the size of all neighborhoods is the same (counting the
false neighbors), a new implementation that is halfway between the original
Bitonic Merge Sort and the GPU version is possible. The rasterizer X
position (equivalent to the U texture coordinate of TQ) is used to offset
the index of the current element. Additionally, this implementation avoids
the use of the 1D-to-2D coordinate conversions present in the original GPU
implementation. The final algorithm can be found in the Algorithm 3.2 and
the proposed modification (simple but very efficient) has been remarked in
red.

Please note that in the same process, TQ′ is also sorted to keep coherent
to the order of Tα (Line 12). In this way, two simultaneous sorts are
done. Additionally, the order of some operations have been changed: even
when the angles ᾱj and ᾱk are not needed until Lines 9 and 10, they

44 Chapter 3. GPU Local Triangulation

Algorithm 3.2 Adapted Bitonic Merge Sort for multiple lists sorting

1: function adapted bitonic merge sort(j, stage, step, offset)
2: Let posj be the current rasterizer position (x, y)
3: ᾱj ← Tα[posj]
4: sign← (j mod stage) < offset ? 1 : −1
5: k ← sign ∗ offset
6: posk ← posj + (k, 0)
7: ᾱk ← Tα[posk]
8: dir ← 2 (1− ((j/step) mod 2))− 1
9: posmin ← ᾱj < ᾱk ? posj : posk

10: posmax ← ᾱj < ᾱk ? posk : posj
11: Tα[posj]← sign = dir ? Tα[posmin] : Tα[posmax]
12: TQ′ [posj]← sign = dir ? TQ′ [posmin] : TQ′ [posmax]
13: end function

are computed before in strategic places to reduce the latency of texture
fetching (ᾱj in Line 3, ᾱk in Line 7). This is a common practice in shaders
based programming and it is widely used in the implementation of other
algorithms in this work as well.

3.4.6 Phase 5 – Local triangulation

In order to exploit the parallelism and to fulfill GPU restrictions when using
shaders, in this implementation of GLT, Algorithm 3.1 was substituted by
a series of simultaneous validations over the ring of candidate points (see
Algorithm 3.3 and Figure 3.13). In each validation pass h, all candidate
point are marked as valid or invalid, and in the next round all valid ones
update their neighbors, in case any have been invalidated. When no changes
occur, the local Delaunay triangulation of p finishes.

The R structure has been updated to support the new algorithm and it
now contains references rj .prev and rj .next to the previous and next valid
neighbors, as well as a validity flag rj .valid. Initially, all the neighbors are
considered valid and the ring is fully connected. For example, if rj = q′j , then
rj .prev = q′j−1 and rj .next = q′j+1, and therefore, rj−1.next = rj+1.prev =
rj . Special cases are the first and last elements: r0.prev = rm−1, rm.next =
r1 (remember that the last r0 = rm).

The supporting texture TR that is used to store R can be seen in Figure

Section 3.5. Implementation using CUDA 45

3.14. It includes the next and previous valid neighbor in the RG components,
the index of the central point (p) and the validity flag in the BA texel
components; as all the neighbors of p are stored under the same U coordinate
(the same “row”), only the offset from the first neighbor is necessary.

Algorithm 3.3 Local Delaunay triangulation algorithm adapted
for its implementation with shaders. prev valid neighbor(j) and
next valid neighbor(j) are supporting functions.

1: h← 1
2: Create T

(0)
R from Tα

3: function local 2D Delaunay(j, T
(h−1)
R) ⇒ T

(h)
R

4: Let posj be the current rasterizer position (x,y)

5: rj ← T
(h−1)
R [posj]

6: if rj .valid then
7: rj .prev ← prev valid neighbor(j)
8: rj .next← next valid neighbor(j)
9: rj .valid← is valid(p, q′rj .prev, q

′
j , q
′
rj .next)

10: end if
11: return rj
12: end function

Finally, this algorithm uses a ping-pong scheme: only two copies of TR
are actually used (T

(0)
R and T

(1)
R) and in each pass they alternate the reading

and writing roles. This is due to a hardware limitation: texture scattering
is not possible to textures that are being used for fetching.

3.5 Implementation using CUDA

In the previous section numerous adaptations required to implement GLT
using shaders were discussed. Although with the arrival of CUDA many
of these adaptions became unnecessary, not every implementable solution
is efficient (many factors like processors occupancy and accesses to global
memory have a strong influence in the performance of the CUDA kernel). In
this section, the main challenges when creating the CUDA implementation
will be discussed. The correspondent algorithm workflow for the CUDA
implementation can be seen in Figure 3.15.

46 Chapter 3. GPU Local Triangulation

Figure 3.13: The shaders implementation of GLT uses a ring to
check all the neighbors in parallel, discarding the invalid ones in
each iteration.

Figure 3.14: TR – Delaunay ring texture: previous and next
neighbor, the central point and validity flag.

3.5.1 Data structures

In contrast to shaders, CUDA allows the use of more complex datatypes
such as structures, simplifying the design and increasing the data that a
single point may directly store. Even with this advantage, it is convenient
to inspect the different algorithms and see what data is actually needed by
each of them. If all the data is stored into a single package, it will increase
unnecessarily the bandwidth required to upload them, as well as reducing
the efficiency of GPU’s cache.

In this sense, instead of dedicating individual sections to each data

Section 3.5. Implementation using CUDA 47

Figure 3.15: Flow diagram of the CUDA implementation.

structure (as happened with the more complicated ones used in the shaders
development), they will be enumerated and, when possible, the equivalent
or more similar texture structures from the shader implementation will be
mentioned:

• CP , CN : store the input points and their normals. They are equivalent
to TP and TN , respectively.

• CR: contains the neighborhood information, angles and distances. As
CUDA kernels are able to write information in the same memory
space of the input parameters, this structure is reused in the
triangulation phase (as a low-level implementation detail, it makes
use of the C union declaration to preserve the readability of the
code while reusing the fields). This structure is then a combination
of the TQ, Tα and TR.

• CQ′ : this structure contains the projected neighborhoods, in the same
way TQ′ does.

• Cm: stores the size of each neighborhood. It has no direct equivalent
in the shader implementation, where this data is stored directly in
the neighborhood textures for performance issues.

48 Chapter 3. GPU Local Triangulation

3.5.2 Phase 4 – Radial sorting

In the shader implementation of GLT, the radial sorting is performed using
a modified version of the Bitonic Merge Sort, optimized to work with several
small lists at a time. For the CUDA implementation, three different sorting
algorithms were tested: the modified Bitonic Merge Sort (see Section 3.4.5),
Insertion Sort (Knuth, 1998) and the widely known Bubble Sort. Comparing
the times of each one, it could be seen that, even when it has a quadratic
complexity, the Bubble Sort produced the best results. It is due to the fact
that the lists are small, and that the other algorithms use more registers,
reducing the occupancy of the GPU.

3.5.3 Phase 5 – Local triangulation

The ring-based algorithm exposed in Section 3.4.6 has been proved to be
both valid (from proof in Section 3.3.7.2) and efficient when implemented
with shaders. But the ping-pong scheme used is no longer needed given
that CUDA allows the threads to randomly write in any global memory
position. However, initial tests showed that the GPU occupancy was
very low using it, decreasing the performance in CUDA. On the other
hand, a direct implementation of Algorithm 3.1 is not possible since it
depends on a dynamic structure to delete the invalid neighbors. Instead,
a mixed version has been created using the extended ring structure of
the shaders implementation and the basis of the iterative backtracking,
while introducing a new rj .valid field that replaces the erasing of invalid
neighbors.

3.6 Experiments and results

Three versions of the Local Delaunay Triangulation method were tested: the
proposed CPU implementation of (Gopi et al., 2000), and the two discussed
variations of GLT: using shaders and using CUDA. Additionally, tests using
another existing method, the Poisson reconstruction (Kazhdan et al., 2006)
are shown.

All tests in this work were performed on several known and public
datasets, as well as in a few private models. The public models used in this

Section 3.6. Experiments and results 49

Algorithm 3.4 Local Delaunay Triangulation algorithm optimized for
CUDA.5

1: function local 2D Delaunay(p,m,R)
2: min← 1
3: j ← 1
4: while j < m do
5: if rj .valid and is valid(p, 〈rj .prev, rj , rj .next〉) = false then
6: rj .valid← false
7: rj .prev.next← rj .next
8: rj .next.prev ← rj .prev
9: if j > min then

10: j ← rj .prev
11: else
12: min← rj .next
13: j ← min
14: end if
15: else
16: j ← j + 1
17: end if
18: end while
19: end function

work were obtained from the Stanford 3D Scanning Repository (Stanford
Computer Graphics Laboratory), the Computer Graphics Group (Czech
Technical University in Prague) and the Institute of Information Theory
and Automation (Academy of Sciences of the Czech Republic). Private sets
were designed in 3Ds Max, scanned in the Industrial Design Laboratory
(TECNUN, University of Navarra). Patient’s heads were obtained from the
test dataset of the MAXIPLAN Project, developed by CEIT. For tests
using the Poisson reconstruction, the MeshLab6 package was employed.

The testing hardware consisted of an Intel Core2Duo of 3.00GHz, with
3GB of RAM and an NVIDIA 9850 with 1GB of VRAM.

5It can be seen that rj , rj .prev and rj .next have been indistinctly used as points and
indices. It has been done for simplicity. Actually, both rj .prev and rj .next are indices
and the rj neighbor is accessed from Q′ using the j index.

6Mesh processing tool developed with the support of the 3D-CoForm project. http:
//meshlab.sourceforge.net

http://meshlab.sourceforge.net
http://meshlab.sourceforge.net

50 Chapter 3. GPU Local Triangulation

3.6.1 CPU vs Shaders vs CUDA

Experiments consisted in a comparison of the different GLT
implementations running in the hardware specified above. The setup
of the method was 32 points for the neighborhood size and a support
radius similar to the sampling rate of each model (some of them were
obtained empirically since it was not provided).

For each model, ten executions were done and times were averaged.
Execution times are shown in Table 3.1 and in the sequence from Figure
3.16 to Figure 3.21 a time comparison of each phase using the three GLT
implementations while Figure 3.22 shows total reconstruction times.

Model Size CPU Shaders CUDA

Noisy Foot 20K 1.55s 0.82s 0.44s
Stanford Bunny 35K 2.81s 1.47s 0.77s
Horse 48K 3.65s 1.84s 0.92s
Running Shoe 51K 4.07s 2.06s 1.06s
Collar 60K 4.71s 2.41s 1.28s
Patient’s Head 1 148K 11.18s 5.82s 3.05s
Armadillo 172K 9.59s 6.95s 3.66s
Angel 237K 18.62s 10.60s 5.59s
EG’07 Dragon 240K 18.45s 9.68s 5.00s
Patient’s Head 2 325K 24.46s 13.50s 6.38s
Hand 327K 24.29s 12.73s 6.39s
Stanford Dragon 437K 33.64s 17.37s 8.90s
Happy Buddha 543K 41.47s 21.46s 11.08s
Patient’s Head 3 611K 46.19s 24.68s 13.25s
Ramorig 622K 46.80s 24.42s 12.54s
Blade 882K 69.30s 35.57s 18.37s

Table 3.1: Total reconstruction time using three different
implementations. In general, Shaders implementation beats up
CPU by a factor of 2 while CUDA offers the same boost with
respect to the Shaders. These times are also shown in Figure 3.22.

Section 3.6. Experiments and results 51

Figure 3.16: Time comparison of the computation of the
neighborhoods.

Figure 3.17: Time comparison of the normal estimation phase.

Figure 3.18: Time comparison of the angle computation and
projection phase.

52 Chapter 3. GPU Local Triangulation

Figure 3.19: Time comparison of the sorting phase.

Figure 3.20: Time comparison of the local Delaunay validation.

Figure 3.21: Time comparison of the local Delaunay triangulation
(validation plus mesh creation).

Section 3.6. Experiments and results 53

Figure 3.22: Comparison between the different proposed
reconstruction methods.

3.6.2 Reconstruction results

In this section a few reconstructed models from Table 3.1 are shown. For a
more complete list of images, please refer to Section 5.2, where final results
of this work are exposed. Please, note that all the images in this work were
rendered with flat shading to emphasize the actual mesh quality.

Figures 3.23 and 3.24 show the behavior of the GLT under well sampled
meshes (in this case, the model is obtained from a previously reconstructed
dataset). Regarding tests of GLT from another sources, Figure 3.25 is
the reconstruction of a synthetic model and Figure 3.26 is from a rough
scanning of a shoe.

This last figure shows a hole in the top zone of the model; holes and
overlapping triangles may be generated if four or more points lie on the same
circumference. In such case, the Delaunay triangulation is not unique.

Finally, in Figure 3.27 and Figure 3.28, the Blade model is shown. This
is the biggest model shown in Table 3.1, with 882954 points. Although a
bigger model (the Asian Dragon) was reconstructed in these experiments, it
was removed from the graphs due to the difference in the order of magnitude
of the times (its times are shown in Figure 3.29).

54 Chapter 3. GPU Local Triangulation

Figure 3.23: Horse model rendered along with its wireframe.

Figure 3.24: Neck and chest detail of the Horse model.

Section 3.6. Experiments and results 55

Figure 3.25: A synthetic model.

Figure 3.26: Running shoe along with its wireframe. Note that,
even when the mesh quality is pretty good, some holes may be
created due to bad sampling as the one visible at the top of the
shoe.

56 Chapter 3. GPU Local Triangulation

Figure 3.27: Blade model.

Figure 3.28: Top view of the Blade model. Small structures, as
holes, were satisfactorily reconstructed.

Section 3.6. Experiments and results 57

3.6.3 Big models

In this section, reconstruction results for three models with more than a
million points are presented. Figure 3.29 details the time consumption for
each phase during the reconstruction of the Asian Dragon model. Table 3.2
summarizes the total reconstruction time of each model using the CUDA
implementation. It is remarkable to say that, even when the Welsh Dragon
model has more than a million points, it is not quite representative given
that its points are distributed in a highly uniform way.

Figure 3.29: Overall view of time consumption in the
reconstruction of the Asian Dragon model (3609K points). It can
be seen how more than 75% of the time is spent in CPU phases
(neighborhoods computation and mesh assembling). Normal
propagation is not shown in this chart. The total reconstruction
time for this model, including the propagation, is 73.25 seconds.

Model Size CUDA Normal propagation

Welsh Dragon 1105K 19.48s 4.92s
Asian Dragon 3609K 56.04s 16.15s
Thai Statue 4999K 78.16s —

Table 3.2: Total reconstruction time of three big models using the
CUDA implementation. Due to memory limitations, the normal
propagation of the Thai Statue model was not possible.

Studying the normal propagation in big models, it has been found that

58 Chapter 3. GPU Local Triangulation

the memory consumption is quite significative given the data structures
required for it. The Thai Statue model is a good example of it, as it can
be seen in Table 3.2, where the memory employed exceeds the 2GB, the
limit for a single process in the operating system used (Windows XP SP3
32bits).

3.6.4 Comparison with an approximating method

In addition to the comparison of the presented method, GLT, with the
original Lower Dimensional Localized Delaunay triangulation of (Gopi
et al., 2000), the Poisson reconstruction (Kazhdan et al., 2006) has been
employed to reconstruct some of the models previously listed. Table 3.3
summarizes these results, and a graphical comparison between GLT and
Poisson is shown from Figure 3.30 to Figure 3.33.

Model Size Poisson CUDA GLT

Noisy Foot 20K 4.84s 0.44s
Angel 237K 32.38s 5.59s
Happy Buddha 543K 58.74s 11.08s
Blade 882K 135.66s 18.37s
Asian Dragon 3609K 181.82s 73.25s

Table 3.3: Total reconstruction time using the Poisson
reconstruction tool from MeshLab. The Noisy Foot, the Blade
and the Asian Dragon employed an octree of depth 10, while the
Angel and the Happy Buddha a depth of 9.

Section 3.6. Experiments and results 59

Figure 3.30: Comparison with the Poisson reconstruction - Angel.
The small details, like foot toes, are better recovered by an
interpolating technique like GLT (left) than by an approximating
one, as the Poisson reconstruction (right).

Figure 3.31: Comparison with the Poisson reconstruction - Happy
Buddha. The left image corresponds with the reconstruction using
the GLT method, and the right image used the Poisson method.

60 Chapter 3. GPU Local Triangulation

Figure 3.32: Comparison with the Poisson reconstruction - Blade.
The serial number is more readable in the surface generated with
the GLT (left), but the Poisson method (right) is less prone to
topological issues like the union of the blade with the base, where
sampling is ambiguous.

Figure 3.33: Comparison with the Poisson reconstruction - Interior
detail of the Blade model. The left image was reconstructed
using the GLT method, and the right image using the Poisson
reconstruction.

Section 3.6. Experiments and results 61

3.6.5 Application in the medical field

Figure 3.34 shows the results of the proposed GLT method in the medical
application MAXIPLAN (a project developed by CEIT). GLT is used to
reconstruct the skin of patients’ heads. The points are extracted from the
segmentation of CT images (computerized tomographies). In this case, the
classical Marching Cubes method is not enough since the mesh should
be deformed using a mass-spring model from the segmented points (San
Vicente et al., 2009). Using an approximating technique, such as direct
iso-surface extraction, may create non box-aligned points, a requirement of
the simulator. Creating a morpher that links the mass-spring model with
the extracted iso-surface would be unnecessarily expensive compared with
a direct interpolating reconstruction.

Figure 3.34: From left to right: Patient’s Head 1, Patient’s Head
2 and Patient’s Head 3 datasets. As points are extracted from a
volumetric source (CT images), the reconstruction presents this
stair-like appearance.

3.6.6 Application in cultural heritage

The models studied in previous sections could be classified into an “objects”
category, i.e., models where the scanner goes around the target and it is
usually near the scanned object. This is a valid scenario if the target object
is an sculpture, a vase, an anatomical region, and similars; but if the desired
surface comes from an open area such as a room or a garden, or where
the scanner is far from the target, like a building, then the reconstruction

62 Chapter 3. GPU Local Triangulation

becomes different since the points cloud tends to be more sparser and it is
far from being uniformly distributed.

This differentiation is necessary before exposing results of the
reconstruction method applied to cultural heritage, since it presents data
sets of both kinds. This section presents results of applying the proposed
method to three different models from cultural heritage projects7. Figure
3.35, for example, comes from a scanned Trophy, belonging to the “object”
type, while the Figure 3.36 is a Roman Theatre, it is, an open space. It can
be seen that GLT fails to properly reconstruct the Theatre model, given the
points, due to the nature of the scanning process used, have a very uneven
distribution, as well as too much missing areas. This sparse and non-uniform
structure makes impossible to determine a satisfactory sampling distance:
near the scanner points are very dense while it becomes sparser as it goes
away the centre. Finally, the Tower shown in Figure 3.37 could be properly
reconstructed although it comes from a similar scanning process, because
it provided four different views of the tower that mutually compensate
the lack of information (these view were aligned as a preprocessing step).
Also, this model is more simple than the Theatre, in terms of the sampling
distance, so it is possible to find a maximum value that do not generate
false positives (points not belonging to the real neighborhood of a point).

Figure 3.35: Reconstruction of a Trophy.

7Models courtesy of Prof. Juan Carlos Torres, University of Granada.

Section 3.6. Experiments and results 63

Figure 3.36: This Theatre has not been succesfully reconstructed
due to the sparseness of the points of the auditorium zone. Only
the wall could be extracted correctly.

Figure 3.37: Reconstruction of a Tower. The points of the different
views of the scanner were aligned before the reconstruction.

64 Chapter 3. GPU Local Triangulation

3.7 Discussion

In this chapter, a local Delaunay triangulation for surface reconstruction
has been presented, proving (both mathematically and empirically) that
local triangulations are good candidates for parallelization and that they are
suitable for GPU implementation. It has been shown how the proposed GLT
method can efficiently reconstruct a surface from a set of points, showing
an average improvement of two or three times over the state-of-the-art
methods.

Other main contributions of this chapter include changes to the normal
estimation phase using Weighted PCA, the improvement of the angle
computation phase using a modification of the technique proposed by
(Crossno and Angel, 1999) and the development of a multi-list sorting
algorithm based on the Bitonic Merge Sort.

Regarding the surface generated, as GLT interpolates the input points
it depends on their quality. Once the surface has been generated, a
post-processing operator such as mesh smoothers can be applied to obtain
a softer surface. Also, a preprocessing step can be applied to improve the
points before the reconstruction.

The withdraws of the method proposed are its dependence to some
uniformity in points distribution as well as a proper points density along
zones with higher detail. For example, holes may appear if there are not
enough points, or crossing triangles may be created if the density is not
enough for the level of detail. Also, it was shown that, although the
method itself can handle large datasets, the normal propagation stage still
represents an issue to be solved.

Among the application of studied techniques in other fields, the
divide-and-conquer nature local triangulations makes them appropriate for
mesh streaming. For example, a model is partitioned using a uniform grid,
and each cell or block is sent individually; each block that already has its
neighbors received can be safely reconstructed.

Chapter 4

Parallel Weighted Locally
Optimal Projection

The simplification of anything
is always sensational

Gilbert Chesterton

A synthesis of this chapter has been published in:

Buchart, C., Amundarain, A., and Borro, D. 3-D surface geometry
and reconstruction: Developing concepts and applications, chapter
Hybrid surface reconstruction through points consolidation. IGI
Global. 2011. (Sent and under revision).

4.1 Previous works

There are some interesting works regarding a preprocess step before
reconstruction. As mentioned before, one of the major problems concerning
all the methods is the quality of the input data. What preprocessing steps
try to do is to improve such quality, removing noise and generating a more
uniform set of points. It is especially convenient for interpolating methods,
due to their dependence on the input data.

(Alexa et al., 2003) study the direct visualization of point set surfaces,
defining a projection operator that projects the points near the data set onto
the surface, and then constructing a moving least-square surface (Levin,
2003).

65

66 Chapter 4. Parallel Weighted Locally Optimal Projection

In more recent years, (Lipman et al., 2007b) present a
parameterization-free projection operator called LOP (Locally Optimal
Projection) to deal with outliers, and (Huang et al., 2009) developed a new
WLOP (Weighted LOP), improving the previous operator with a more
uniform distribution of points and a clearer convergence. This operator is
also used to boost up normal estimation and propagation. One of the main
problems of these operators is that they are very expensive in terms of
execution time when compared to the time required for the most common
reconstruction algorithms.

Finally, (Zhang et al., 2010) propose a meshless parameterization and
de-noising of a set of points by rigid alignment of locally flattered proximity
graphs.

In this chapter, the works of (Lipman et al., 2007b) and (Huang et al.,
2009) are studied and a parallel implementation is presented in order to
increase the performance of the operator.

4.1.1 Locally Optimal Projection Operator

Given a set of points P = {pj} , j ∈ J = {1, 2, . . . , |P |}, an initial guess
X0 = {xi} , i ∈ I =

{
1, 2, . . . ,

∣∣X0
∣∣}, a repulsion parameter µ ∈ [0, 1/2)

and support radius h, the Locally Optimal Projection (LOP) algorithm
presented by (Lipman et al., 2007a) computes the projection of X onto P
in an iterative way1. For each iteration k ∈ 1, 2, 3 . . . it defines the projection
for the i-th point of X:

x
(k)
i =

∑
j∈J

pjα
(k−1)
ij∑

j∈J
α

(k−1)
ij

+ µ

∑
i′∈I\{i}

(
x

(k−1)
i − x(k−1)

i′

)
β

(k−1)
ii′∑

i′∈I\{i}

β
(k−1)
ii′

, i ∈ I (4.1)

where

α
(k)
ij =

θ
(∥∥∥x(k)

i − pj
∥∥∥)∥∥∥x(k)

i − pj
∥∥∥ (4.2)

Section 4.1. Previous works 67

β
(k)
ii′ =

θ
(∥∥∥x(k)

i − x
(k)
i′

∥∥∥)∥∥∥x(k)
i − x

(k)
i′

∥∥∥
∣∣∣∣∂η∂r (∥∥∥x(k)

i − x
(k)
i′

∥∥∥)∣∣∣∣ , i′ ∈ I\ {i} (4.3)

θ (r) is a weight function with compact support radius h, that defines
the area of influence of the operator; it can be seen as a Gaussian filter

applied to the distance function from x
(k)
i . η (r) is a repulsion function that

penalizes points going too close to each other. The support radius h is
usually set as h = 4

√
dBB/ |P |, where dBB is the diagonal length of the

bounding box of P (Huang et al., 2009). In the work of (Lipman et al.,
2007a), such functions are defined as

θ (r) = e−r
2/(h/4)2 (4.4)

η (r) =
1

3r3
(4.5)

4.1.2 Weighted Locally Optimal Projection Operator

In their extension of LOP, (Huang et al., 2009) comment that the
repulsion force may decrease too fast in many situations, contributing to a
non-uniform distribution of points in X. They then propose a new repulsion
term “which decreases more gently and penalizes more at larger r, yielding
both a better convergence and a more locally regular point distribution”
(Huang et al., 2009, p. 3). They also set, empirically, µ = 0.45. The new
repulsion function is

η (r) = −r (4.6)

which also leads to a simplified β term

β
(k)
ii′ =

θ
(∥∥∥x(k)

i − x
(k)
i′

∥∥∥)∥∥∥x(k)
i − x

(k)
i′

∥∥∥ , i′ ∈ I\ {i} (4.7)

1In the whole of this work, ‖ · ‖ represents the Euclidean norm of a vector

68 Chapter 4. Parallel Weighted Locally Optimal Projection

To improve even more the distribution of points, it incorporates locally

adaptive density weights vj for each pj ∈ P , and w
(k)
i for each x

(k)
i ∈ X(k):

vj = 1 +
∑

j′∈J\{j}

θ
(∥∥pj − pj′∥∥) (4.8)

w
(k)
i = 1 +

∑
i′∈I\{i}

θ
(∥∥∥x(k)

i − x
(k)
i′

∥∥∥) (4.9)

In this way, the weighted LOP (WLOP) operator (Huang et al., 2009)
is defined as

x
(k)
i =

∑
j∈J

pjα̂
(k−1)
ij∑

j∈J
α̂

(k−1)
ij

+ µ

∑
i′∈I\{i}

(
x

(k−1)
i − x(k−1)

i′

)
β̂

(k−1)
ii′∑

i′∈I\{i}

β̂
(k−1)
ii′

, i ∈ I (4.10)

where

α̂
(k)
ij =

θ
(∥∥∥x(k)

i − pj
∥∥∥)∥∥∥x(k)

i − pj
∥∥∥

vj
(4.11)

β̂
(k)
ii′ =

θ
(∥∥∥x(k)

i − x
(k)
i′

∥∥∥)∥∥∥x(k)
i − x

(k)
i′

∥∥∥ w
(k)
i , i′ ∈ I\ {i} (4.12)

4.2 Parallel WLOP

Once that the bases of the LOP and WLOP operators have been exposed,
this section will discuss their performance as well as describe a new operator
proposed to dramatically reduce the time needed for the projection.

The main issue of both LOP and WLOP is their execution time.
Some straightforward optimizations (probably present in the original

Section 4.2. Parallel WLOP 69

implementations, but no details are given in the publications) may include
computing squared distances instead of the actual distance; and avoiding
evaluating the weight function θ(r) on the full domain, but only where its
weight does not vanish, i.e., evaluate the function in the h-vicinity of each
point (the main issue with it is the computation of such vicinity).

Even with these optimizations, WLOP is especially slow because it must
evaluate the local density weights in each iteration, which means having
to recompute the h-vicinity of each point several times. In this work, it
has seen that if a good initial guess X0 is provided (see below for further
explanation), the neighborhoods variations are small since the points tend
to move just a little (weights do change between iterations). The points that
fall into the support of the local density weights of a point have been called
the local support neighborhood (LSN) of such a point. In this thesis it is
proposed to preload an extended LSN that includes all the points that may
fall in the support radius h during the iterations of the operator (see Figure
4.1). Even when some neighbors in the extended LSN may fall outside the
support radius (thus computing unnecessarily the weight function), it is
worth the time gained by avoiding the costly neighborhood computation.
In tests performed, an extended radius of 2h works well in most of the cases.
Also, bounding the maximum number of neighbors is important given the
fact that the CUDA matrices are static; in the tests, 64 points of vicinity
were enough to correctly project most of the models, while 128 were used
in noisy models.

Figure 4.1: Local support neighborhood (dark area) vs. the
extended LSN (lighter area).

The new local weight densities may be expressed in function of their

70 Chapter 4. Parallel Weighted Locally Optimal Projection

local support neighborhoods as

v̄
(k)
j = 1 +

∑
j′∈J̄j

θ
(∥∥pj − pj′∥∥) (4.13)

w̄
(k)
i = 1 +

∑
i′∈Īi

θ
(∥∥∥x(k)

i − x
(k)
i′

∥∥∥) (4.14)

where Īi defines the precomputed neighborhood of xi, and J̄j is the

precomputed neighborhood of pj . To simplify the notation, ᾱ
(k)
ij and β̄

(k)
ii′

will denote the α̂
(k)
ij and β̂

(k)
ii′ terms with precomputed neighborhoods.

In the same way, neighborhoods in Equation 4.10 are replaced by
their precomputed counterparts. Experiments reveal that simply avoiding
the expensive neighborhood computation with the previously exposed
technique, it is possible to obtain speed up ranges around 50% in the
execution time in the CPU. This variation of the WLOP operator has been
called extended WLOP, or eWLOP for short.

The only problem so far is the initial guess X0. However, a good and
easy-to-compute initial set can be obtained by the spatial subdivision of P ,
taking X0 as the centroid of the points inside each cell. This also follows
the common sense that a uniform data set may be crudely represented by
a grid-based subsampling of the point set.

At this point, it raises the question about parallelization. The less
parallel part of the algorithm is neighborhoods computation, but since all
these calculations have been moved to a preprocessing stage, it must be
done just once; the proposed implementation has used the ANN library
of (Mount and Arya, 2010) to perform the k-nearest neighbors (k-NN)
computation2. The rest of the algorithm is data independent in the same

iteration k, i.e., a projected point x
(k)
i only depends on previously projected

points x
(k−1)
i′ and the original points P .

Based on the preceding analysis, a Parallel WLOP (PWLOP) that
performs on average 25 times faster than the original WLOP is proposed.
PWLOP uses graphical hardware acceleration by implementing it on the
CUDA architecture. It is worth mentioning that, although the algorithm

2When talking about neighborhoods, k is the number of neighbors, not the current
iteration, which is represented between parenthesis: (k).

Section 4.3. Experiments and results 71

is dependent between consecutive iterations, there is no need to do
CPU processing after an iteration has finished, so the operator can
execute completely in the GPU before downloads the projected points
into the main memory. Additionally, and for testing purposes, the original
WLOP has been modified introducing the extended LSN, but without the
parallelization plus of PWLOP (the eWLOP).

4.2.1 Implementation details

The PWLOP operator is susceptible to many optimizations that help to
speed up the method and to reduce the number of GPU registers used,
thereby incrementing the GPU occupancy and increasing performance.
Some of these optimizations include:

1. Terms like β̂
(k)
ii′ , where a norm appears several times; this norm may

be computed only once.

2. Expressions such as

∑
j∈J

pjα̂
(k−1)
ij∑

j∈J
α̂

(k−1)
ij

can be computed once.

3. The weight function θ (r) = e−r
2/(h/4)2 may be expressed as θ (r) =

e−ĥr
2
, where ĥ = (4/h)2 is precomputed. Moreover, the distance r

may be used in its squared form, avoiding the costly squared root (in
this sense, for example, many k-NN algorithms return the squared
distances).

4. Finally, there are several terms that may produce a division-by-zero
when the distance between two points vanishes (more likely between
X and P). To solve this issue, and to avoid inconvenient branches,
since the divisor is always positive (distances) it is common to add a
small value to it.

4.3 Experiments and results

Figure 4.2 shows a comparison of the execution time of the WLOP, the
extended WLOP and PWLOP for a simple model.

72 Chapter 4. Parallel Weighted Locally Optimal Projection

Figure 4.2: Speed comparison between WLOP, eWLOP and
PWLOP in the projection of 22K points from the Stanford Bunny
(35K points), using a different number of iterations.

In these experiments, the local support neighborhood of the eWLOP
and PWLOP was set to 32 points. For WLOP tests and rendering of results,
the Points Consolidation API was employed (it is publically available in
(Huang et al., 2010)).

Figure 4.3 and Figure 4.4 show projection results for the Happy Buddha
model. In Figure 4.3, the initial guess is a random subsampling of the
model and the number of iterations is set to 50 for both methods. As the
initial guess is crude, the PWLOP operator fails to converge since the local
weight densities were calculated over wrong neighborhoods. On the other
hand, Figure 4.4 shows a more accurate initial guess, extracted from the
grid subdivision described above. As the initial guess is near a solution, the
number of iterations was reduced to only 10. It can be seen how the results
from WLOP and PWLOP are almost identical, while PWLOP executes
four times faster than WLOP.

As an additional test, the speed comparison seen in Figure 4.4 was
extended to include the eWLOP and increasing the number of iterations.
Results can be seen in Table 4.1. It shows how PWLOP can execute 50
times more iterations than the original WLOP in the same period of time
under equal circumstances (the initial guess set). Also, the average speed
up offered by PWLOP against the extended WLOP is of 25 times, ignoring
the common neighborhood computation time (6.55s).

Section 4.3. Experiments and results 73

(a) Random
∣∣X0

∣∣=54K (b) WLOP (91.75s) (c) PWLOP (8.9s)

Figure 4.3: Projection of the Happy Buddha (543K) with h = 0.2
and 50 iterations.

A full speed test over several models is shown in Figures 4.5 and 4.6.
There it can be seen how PWLOP is an order of magnitude faster in the
worst case. It was found that more than a half of the execution time of
PWLOP is spent in the computation of the extended LSN (see Figure 4.7),
very reasonable since it is a heavy task and it is done in the CPU instead
of the GPU as with the rest of the algorithms.

Concerning the projection of noisy data sets, such analysis is deferred
to the next section, since it will be easy to see the changes between original
and projected datasets when they are reconstructed.

Finally, as described along this chapter, the validity of the PWLOP
operator comes from the use of an eLSN for each point. Figure 4.3 illustrated
what happens if this premise is not valid. In the following experiment, a

74 Chapter 4. Parallel Weighted Locally Optimal Projection

(a) Grid
∣∣X0

∣∣=55K (b) WLOP (24.63s) (c) PWLOP (6.87s)

Figure 4.4: Projection of the Happy Buddha (543K) with h = 0.2
and 10 iterations.

random set of points is used as the initial set and, instead of using the
eLSN and computing it only in the first iteration, the LSN is used for
several iterations and it is marked to be recomputed each 10 iterations.
This leads to a midpoint approach between the original WLOP, that
computes the LSN in each iteration, and the PWLOP, that uses only the
first eLSN. Results of this experiment are shown in Figure 4.8. As can be
seen, this approach leads to a slightly better projection than WLOP. On
the other hand, and as expected, the required time is increased considerably
compared with PWLOP, although it remains inferior to the one employed
by WLOP.

Section 4.3. Experiments and results 75

Iterations WLOP eWLOP PWLOP

10 24.63s 14.59s 6.87s
100 101.79s 87.53s 9.58s
500 963.11s 410.36s 22.69s

Table 4.1: Speed comparison between WLOP, eWLOP and
PWLOP when projecting the Happy Buddha model (543K),∣∣X0

∣∣=55K, h = 0.2.

Figure 4.5: Projection of different data sets using WLOP, the
eWLOP and the proposed PWLOP operators. For all the data
sets, 50 iterations were used as well as LSN = 64.

Figure 4.6: The Extended LSN computation times are common
for both the eWLOP and PWLOP. The test configuration is the
same of Figure 4.5.

76 Chapter 4. Parallel Weighted Locally Optimal Projection

Figure 4.7: The computation of the extended local support
neighborhood is the same for the eWLOP (left) and PWLOP
(right). The speed boost obtained by the parallelization can be
seen in this figure. The model is the Asian Dragon (3609K)
projected onto 325K points. Parameters are set to 50 iterations,
LSN = 64 and h = 0.02.

(a) WLOP (91.75s) (b) PWLOP (8.9s) (c) PWLOP (41.82s)

Figure 4.8: Projection of the Happy Buddha (543K) with h = 0.2
and 50 iterations, resetting the initial data set each 10 iterations.

Section 4.4. Discussion 77

4.4 Discussion

In this chapter, a projection operator for points preprocessing, WLOP, that
includes noise removal and redistribution of input points, is studied, as well
as a new operator, PWLOP, with parallel capabilities is presented. This new
operator has been designed to be implemented in the GPU using CUDA,
because WLOP’s limitations made it unsuitable for parallel architectures.
PWLOP is an order of magnitude faster than the previous WLOP operator,
while keeping the accuracy of the original operator.

78 Chapter 4. Parallel Weighted Locally Optimal Projection

Chapter 5

Hybrid surface
reconstruction: PWLOP +

GLT

–[Luke] I can’t believe it
–[Yoda] That is why you fail

A synthesis of this chapter has been published in

Buchart, C., Amundarain, A., and Borro, D. 3-D surface geometry
and reconstruction: Developing concepts and applications, chapter
Hybrid surface reconstruction through points consolidation. IGI
Global. 2011. (Sent and under revision).

5.1 Improving the input data set through points
consolidation

Although the local nature of the method presented makes it very favorable
to parallelization, it shares one of the biggest disadvantages of many
reconstructions based on Delaunay triangulations: their sensibility to noise
and outliers. In this sense, the points projection operators presented in
Section 4.2 help to solve this issue by creating a more uniform set of points,
improving the quality of the reconstruction.

79

80 Chapter 5. Hybrid surface reconstruction: PWLOP + GLT

Moreover, the operator PWLOP developed in this work has execution
times that fall in the same order of magnitude of GLT for even medium
models, making it a reasonable choice for a preprocessing stage, without
considerably increasing the total time required to extract the surface.

This hybrid reconstruction scheme allows the GLT to acquire some of
the characteristics of approximating methods: more tolerance to noise and
outliers, as well as being more robust against frequency changes.

5.2 Results

To test the integration of the PWLOP operator with GLT, the following
methodology was followed: for each model, the initial guess of the projection
contains about a third of the number of input points. All the models were
then projected using the default support radius h, 50 iterations and 64
points for the local support neighborhood (except for the Noisy Foot model,
where a 128 points neighborhood and 100 iterations were used). Regarding
GLT, the reconstruction radius was fixed to h/2.

Several examples of the results of the hybrid reconstruction method
proposed are shown in Figures 5.1 to Figure 5.4, while Figure 5.8 shows a
full comparison of all the experiments done.

Figure 5.5 compares with more detail the quality of the mesh between
the original Hand model and the projected one. In this case, the projection
operator produces the same effect of a points collapsing strategy, improving
the quality of final triangles.

The effects of the PWLOP operator in noisy data sets can be seen in
Figure 5.6. The projection improves the quality of the mesh, although not
as much as an approximating reconstruction can, as shown in Figure 5.7.

In this line, comparing the reconstruction time employed by the hybrid
reconstruction and an approximating method (Poisson reconstruction),
Table 5.1 lists the results of the experiments presented in Section 3.6.4.
The total time of the combined PWLOP + GLT approach is lesser than
the need by the Poisson method. An interesting case is the Blade model,
where the presence of many fine details makes necessary a higher octree
depth in the configuration of the Poisson method. In this sense, GLT is
invariant to these issues, given a proper sampling rate is set. In the original

Section 5.2. Results 81

work of (Huang et al., 2009), Poisson reconstruction is also improved using
a consolidation of points based on the WLOP operator; so, regarding the
reconstruction time, it is also increased in a similar proportion, but, in
anyway, the PWLOP operator presented in this work has demonstrated to
be much faster than WLOP, so it can be also used for those cases where
GLT fails to create a proper mesh (for example, very highly clouds of points,
or if a watertight surface is needed).

Figure 5.1: Stanford Dragon.

82 Chapter 5. Hybrid surface reconstruction: PWLOP + GLT

Figure 5.2: Asian Dragon.

Figure 5.3: Happy Buddha.

Section 5.2. Results 83

Figure 5.4: Hand model reconstruction comparison. (left) Original
model with 327K points reconstructed using only the GLT
method. (right) Reconstruction of a 107K projected points using
the hybrid method.

Figure 5.5: Hand model detail comparison. (left) Original data set
with 327K points. (right) Projected set with 107K points.

84 Chapter 5. Hybrid surface reconstruction: PWLOP + GLT

Figure 5.6: Noisy Foot with 20K points. From left to
right: original data set; self-projected using PWLOP with
LSN=64; self-projected using PWLOP with LSN=128. Bigger
neighborhoods are necessary because in noisy data sets the points
move more between iterations. It can be seen how the nails are still
recognizable. For all the images the number of PWLOP iterations
was set to 100.

Model Size
Projected

Poisson Hybrid
Size (Hybrid)

Angel 237K 86K 32.38s 11.73s
Happy Buddha 543K 192K 58.74s 25.63s
Blade 882K 139K 135.66s 22.97s
Asian Dragon 3609K 325K 181.82s 75.89s

Table 5.1: Comparison of reconstruction times between the
Poisson method and the proposed hybrid approach. The
introduction of the PWLOP operator improves the final mesh
quality, and also reduces the number of points employed in the
reconstruction. The size of the projected sets has been chosen to
try to match the resolution of Poisson’s results.

Section 5.2. Results 85

Figure 5.7: Noisy Foot with 20K points: (left) using PWLOP +
GLT, 1.52s, (right) using the Poisson reconstruction, 4.84s. It
can be seen how, even when the projection operator improves
the quality of the mesh, the continuum origin of approximating
approaches results in softer meshes.

86 Chapter 5. Hybrid surface reconstruction: PWLOP + GLT

Figure 5.8: Results of the hybrid PWLOP + GLT reconstruction.

Section 5.3. Discussion 87

5.3 Discussion

Points set preprocessing is a useful tool if an interpolating reconstruction
technique is going to be used, in order to reduce the noise of the data, to
increase the quality of the reconstructed mesh and, in some cases, to reduce
the size of the input set.

The projection operator PWLOP studied in the previous chapter
creates an uniform set of points that approximates the input data. In
this chapter, the operator is used as a preprocessing phase to clean up
the points set and to increase its uniformity. Experiments showed that the
reconstructed mesh from this hybrid approach presents a higher triangle
quality as well as that the reconstruction time is reduced.

A direct application of the hybrid PWLOP + GLT method is in the
creation of multi-resolution meshes; several meshes can be reconstructed
by varying the size of the initial points set of PWLOP. A quick example of
this application can be seen in Figure 5.9.

88 Chapter 5. Hybrid surface reconstruction: PWLOP + GLT

Figure 5.9: Reconstruction of the Happy Buddha in multiple
resolution using the hybrid PWLOP + GLT approach. Note
that the first model is too coarse that it no longer satisfies the
sampling condition and points near corners are misinterpreted.
The approximate resolutions of each model are, from left to right,
10K, 26K, 118K, 198K and 396K triangles.

Chapter 6

Study of multi-balloons
reconstruction

If debugging is the process of removing bugs,
then programming must be the process of putting them in

Edsger Dijsktra

This chapter studies the possibility of using dynamic techniques for surface
reconstruction, designing a parallel paradigm in order to improve the
recovery of global properties of the model.

6.1 Dynamic techniques

Techniques studied in previous chapters are also known as static techniques
because they directly reconstruct the target surface. There is another group,
known as dynamic techniques, which consist of deformable models that
adjust the destination surface by minimizing an energy function associated
with the model (such minimization is usually performed in an iterative way,
given the non-linear nature of most of these functions)1.

Dynamic methods have been widely used in the segmentation of medical
images. For example, (Kass et al., 1987) formulate the snakes or deformable
contours, one of the most commonly employed techniques. Snakes are
parametric curves that move under the influence of internal forces (defined

1Observe that dynamic techniques may be classified also within the approximating
category (Section 2.2), if the construction of the surface is not taken into account.

89

90 Chapter 6. Study of multi-balloons reconstruction

by the curve) and external forces (derived from the image data). Several
works proposed different formulations for the internal and external forces,
but one of the most relevant is the Gradient Vector Flow (Xu and Prince,
1998), which is a mixed balance force that points toward the object
boundary near the boundary, but that varies smoothly in homogeneous
regions, allowing a better shape recovering as well as forcing the snake to
enter into concave zones. Also worth mentioning is the T-Snake (McInerney
and Terzopoulos, 1999), a topology aware snake that is defined in terms of
affine cell image decomposition2.

Following the idea of snakes, balloons reconstruct a surface represented
by a distance function (Miller et al., 1991; Duan and Qin, 2001). In general,
balloons consist in subdivision surfaces that evolve to extract the shape
of the 0-valued distance, i.e., they can be seen as the 3D extension of
the snakes. Balloons can also reconstruct the topology of the model in
a natural way; for example, when two evolving components of the balloon
are in collision it is possible to merge the surfaces, increasing the genus
of the model. In this line, the work of (Sharf et al., 2006) is especially
good, presenting a competing scheme where active parts of the balloon,
called fronts, are inflated by priority according to their relative size. In
this way, a more intuitive interpretation of data is obtained (Figure 6.1).
Along with the definition of balloons, (Duan, 2003) mention the possibility
of using multiple seeds in parallel to improve the reconstruction time. Also,
another 3D reconstruction scheme from point clouds is the use of discrete
membranes (a connected region of voxels) to recover the shape and topology
of the voxelized point set (Esteve et al., 2005). In a more specific scenario,
(Li et al., 2010) present a reconstruction method for arterial objects based
on that those models are basically 1D; from this fact, the method evolves
tubular snakes along the skeleton of the scanned models.

Finally, the use of the level set method (Osher and Sethian, 1988) is
widely used in the field of surface reconstruction. Contrary to active contour
approaches like snakes and balloons, the level set method manipulates
the surface indirectly. The contour (a curve or surface, depending on the
dimension) is embedded as the zero level set of a higher dimensional
function, which is evolved under the control of a differential equation

2Affine cell image decomposition is a partitioning scheme, very similar to a
triangulation, where the space is divided in cells defined by simplices, and cell vertices are
classified as interior, exterior or boundary, depending on their relation with an automatic
structure (the snake in this context).

Section 6.1. Dynamic techniques 91

Figure 6.1: Competing fronts reconstruct in a more intuitive way
the shape and topology of the data (image from (Sharf et al.,
2006)).

(Ibañez et al., 2005). The evolution of the contour will vary depending
on the formulation of the level-set function. Its main advantages are that
complex shapes can be arbitrarily modeled and topology is easily handled.
As an example, (Zhao et al., 2001) formulate the level-set function as a
surface energy equivalent to the surface area weighted by some power of
the distance function. For a full review of the level set method, please refer
to (Sethian, 1999).

Figure 6.2: Illustration of level sets (image from (Ibañez et al.,
2005)).

6.1.1 Classic balloons

In this section, the definition of Competing Fronts (Sharf et al., 2006) and
the Intelligent Balloon (Duan and Qin, 2001) are presented. In a general
way, a balloon is a subdivision surface Ŝ that evolves from an arbitrary
seed (usually a genus-0 triangle mesh, e.g., a sphere) to minimize an energy
function over the surface domain Γ like:

92 Chapter 6. Study of multi-balloons reconstruction

E(x) =
∑
k

ω(k)

∫
Γ
E(k)(x) (6.1)

where E(k) is a set of forces that regulate the evolution of the balloon, and
ω(k) is the correspondent weights. Such terms are usually classified into
external forces (e.g., attraction to the target surface) and internal forces
(such as curvature or tension constrains).

When the subdivision surface is a polygonal mesh, the minimization of
the function showed in Equation 6.1 can be expressed as:

minE(x) = min
∑
i

∥∥∥∥∥∑
k

ω(k)E
i
(k)

∥∥∥∥∥
2

(6.2)

where Ei(k) is the k-th force term of the i-th vertex. The forces used
by the Intelligent Balloon include a deformation potential, a boundary
constraint, a curvature constraint and an angular constraint. In the case of
the Competing Fronts, these terms are an attraction force (similar to the
deformation potential) and a tension term. The forces used in this work are
better explained in a subsequent section.

Both Intelligent Balloon and Competing Fronts work similarly. Given
a target surface S, they evolve a triangle mesh Ŝ, minimizing the distance
between S and Ŝ. This evolution is done by moving the vertices of Ŝ in
the outward normal direction toward S. When a vertex reaches a local
minimum of the distance function to S it stops moving. This eventually
creates unconnected mesh components of Ŝ (fronts). When the deformable
model completely stops, the method checks if there are remaining parts
of S that have not been satisfied yet. In that case, Ŝ is locally refined
to allow the vertices to move towards the target surface. The quality of
the mesh is guaranteed by interleaving deformation and mesh optimization
operators. Finally, topology can be changed by merging colliding fronts,
which increases the genus of the model by one; the nature of balloons makes
hole filling an implicit feature of these methods, so hole recovering must be
done in a post-processing task. Finally, if unconnected structures have to
be reconstructed, additional balloons must be included.

In the case of the Competing Fronts, each front is assigned a tension
factor that controls the evolution of the front. This control creates a
competition among fronts, allowing bigger fronts, i.e., those with more

Section 6.2. Multi-balloons 93

tension, to evolve faster than small ones. In this way, it recovers the shape
of the model in a coarse-to-fine manner.

6.2 Multi-balloons

One of the main advantages of dynamic techniques is that they provide
tools to better control the reconstruction of the dataset. For example, in
the reconstruction of a soft tissue from medical images, specific conditions
may be easily included into an active contours formulation to respond
to additional data from MRI (magnetic resonance imaging) for better
contrast. Another example is the topology control: when two zones of a
balloon collide, they are usually stopped to avoid a self-crossing of the
surface. These regions can be merged to increase the genus of the model by
one.

In general, and summarizing the previous exposition, balloons perform
the reconstruction based on a single deformable surface that is inflated and
subdivided as needed, merging confronting components if required by the
topology of the model.

There are several shape configurations that deserve attention, for
example, long tubular models and objects with several wide zones connected
by small tunnels as well as the previously mentioned models with several
unconnected regions. In these cases, although active contours can correctly
reconstruct the model, they may incur in unnecessary refinements to satisfy
frequent changes in the level of detail.

Inspired in the competing fronts reconstruction (Sharf et al., 2006) and
the multiple seed extension mentioned by (Duan, 2003), a multi-balloon
scheme is studied in this section. The idea is to place several independent
balloons in each “cave” and let them evolve in parallel. Using multiple
balloons not only may improve the performance of the reconstruction,
but it concurrently creates a more natural and intuitive reconstruction
workflow, where coarser areas are reconstructed first, refining only those
parts of the model that have not been fulfilled yet. As mentioned before, this
coarse-to-fine mechanism brings to mind that used by (Sharf et al., 2006),
although in this case it would be possible to actually complete the coarser
parts of the model before intruding in narrow zones, thereby recovering
in a more satisfactory way global properties from the data set and also

94 Chapter 6. Study of multi-balloons reconstruction

reducing the number of times that the distance function has to be refined.
An overview of the designed algorithm is shown in Algorithm 6.1, while
Figure 6.3 shows a graphical representation of its workflow.

Algorithm 6.1 Overview of the algorithm proposed.

1: Compute distance (F) and satisfaction (G) fields
2: while not reconstructed do
3: while level is not finished do
4: for each active balloon Bi do
5: Inflate(Bi)
6: end for
7: Detect and solve collisions
8: Increase genus if desired
9: end while

10: Refine distance function
11: end while

Figure 6.3: Flow diagram of the studied reconstruction using
multiballoon.

In general, the proposal starts with the computation of an unsigned
distance field to the input points that will guide the reconstruction. Multiple
seeds are placed inside the model, that will reconstruct coarser regions of
the model first, with an independent balloon evolving and adjusting inside

Section 6.2. Multi-balloons 95

of each one. When all these regions are satisfied, finer details and unfinished
regions are recovered by refining the distance field, and therefore increasing
the resolution of balloons. In the meantime, collisions are detected to avoid
balloon intrusions, and topology changes are tracked. This process continues
until all the data set is reconstructed.

Although the method works positioning the seed of each balloon in any
place, it is more efficient to use one balloon for each region of the model;
of course, it is a must to place seeds in each unconnected region. Those
zones may be defined in several ways, for example: not connected cells of
a discrete distance field, a very long tube-like model divided so several
balloons start at different points as proposed by (Li et al., 2010), etc. For
an illustrative example of seed positioning, please see Figure 6.4.

Figure 6.4: Illustrative representation of multiple seeds for the
Hand model.

The following sections are organized as follows: Section 6.2.1 explains
the unsigned distance function and the spatial subdivision structure used as
a helper, and Section 6.2.2 exposes the evolution process, its concepts and
different phases. Section 6.2.3 studies the topology control scheme used in
this work. Finally, Section 6.3 shows some experiments and results of this
proposal.

6.2.1 Scalar function fields

Although not fully introduced yet, this section explains the use and
computation of the distance function field (F) and the satisfaction function

96 Chapter 6. Study of multi-balloons reconstruction

field (G) that guides the evolution of the balloons. F serves as an attraction
force for balloons as mentioned before. G, on the other hand, is more widely
used: for tracking the position of inactive regions in collision detection, to
determine which parts of the model have not been reconstructed yet, and
to set the mesh resolution. For the definition of F , a kd-tree is used to
compute the nearest point to a vertex, while for G, a multi-resolution 3D
grid is employed where its voxels are tagged to reflect the position of the
balloons.

Concerning performance, it has been seen that for data sets inferior to a
million points, kd-tree queries are nearly as fast as a grid, but considerably
more accurate and the data structure requires less memory3. But even using
a kd-tree for the distance function itself, an underlining grid structure is
still necessary to store information about satisfied regions and to guide the
resolution of the mesh.

For most of the models, a few levels of refinement are needed for a
proper reconstruction; so a multi-resolution grid, similar to a n-tree4, was
used instead of the more classical octree, preferring fewer levels of depth
in the tree rather than a high partitioning of the space. This structure is
very similar to a scalar field with fixed resolution, but each cell of the grid
can be refined to better adapt the level-set zero of the distance function
(see Figure 6.5). Although multiple resolutions are possible in each cell and
in any level, experiments showed that it is simpler to have a few levels of
refinement (2 or 3). The resolution of the first level is imposed by the model
(so the coarser regions are recovered easily), while following levels partition
the previous one in 23 (like an octree), 33 or 43 sub-levels. As an example
of the distance function, please see Figure 6.6.

6.2.2 Evolution process

6.2.2.1 Global and local fronts

Both Competing Fronts and Intelligent Balloon make use local fronts to
define active areas of the balloon, i.e., zones that are not near enough to

3Approximating Nearest Neighbors, (Mount and Arya, 2010), has been used to speed
up the queries, setting up an error of a fraction of the cell’s size.

4n-trees are the generalization of binary trees, quadtrees and octrees. Each node of
the tree may either have no children, or have n subnodes.

Section 6.2. Multi-balloons 97

Figure 6.5: Multi-resolution grid used as satisfaction function.

Figure 6.6: Slice of the Horse model’s distance function.

the target surface. These active fronts are those that are evolved, reducing
the size of the minimization problem.

The creation of the fronts may face several questions: is any active
region of the balloon considered a front? is there a minimum front size? It
is important because very small fronts (with respect to the precision of the
distance function) may create an ill-posed system, or produce pledges.

Another issue is the tracking of vertices along successive remeshing
operators (refinements, smoothing, etc.). Such operations destroy and
create vertices, and may change the index scheme of the vertices as well
as new fronts, or may join existing ones. Tracking the vertices of a front is

98 Chapter 6. Study of multi-balloons reconstruction

costly in terms of memory and speed. On the other hand, creating fronts
is a fast operation in comparison to the complexity introduced by vertices
tracking structures, so in this work fronts are computed on-the-fly when
required. This fronts are used only to speed up collision detection and to
determine regions to be joined in genus changes. As fronts are not used in
the evolution process, then they must be, at least, as large as the size of
tunnels and connecting regions in the target model.

In contrast to previous works, the balloons used in this work employ a
global front structure, i.e., the whole balloon is taken into account in the
evolution. This approach improves the overall quality of the mesh although
the evolution speed is reduced. The next section describes a solution to this
problem.

6.2.2.2 Two-step evolution

In previous works, only active fronts (Ŝ components that are not near
enough to S) are included in the evolution of the balloon. In this new
formulation, a different approach is studied, evolving the whole balloon at
each step, but weighing the vertices movement depending on their distance
to S (nearer vertices vary less than further parts). In this way, as the whole
balloon is used, it better recovers the open region where it is evolving, and
it implicitly generates a coarse-to-fine shape recovering.

In order to reduce the computational requirements of the evolution
of the balloon, the minimization system has been replaced by a two-step
inflation process, where external and internal forces are independently
applied.

In the first step, described in Equation 6.3, vertices are moved in the
normal direction toward the target surface, guided by the distance field5.

x
(k+1)
i = x

(k)
i + rin

(k)
i

ri = κiF (x
(k)
i)

(6.3)

The κi is a new modulation term that regulates the attraction force;
it will be explained in Section 6.2.2.3. Using a different formulation from

5From now on, k does not refer to a force but to an iteration of the evolution process.

Section 6.2. Multi-balloons 99

the one proposed in previous works, the system is expressed in terms of the

relative displacement ri from x
(k)
i , rather than the position of the vertex

itself. This point of view comes from a first implementation of the evolution
based on a minimization system. Using ri provides a twofold advantage:
the number of variables that govern the method is reduced, and ri is scale
independent, which means that minimization methods based on gradient
descent do not have to deal with the absolute size of the model. When the
method was changed to avoid the minimization system, the use of a relative
displacement remained useful for a faster and easier computation.

In the second step (Equation 6.4), internal forces smooth the surface
and reduce the tension on it.

Eit =

∑
vj∈N

(
x
(k+1)
i

) cij
(
x

(k+1)
i − vj

)
∑

vj∈N
(
x
(k+1)
i

) cij

cij = cot(αij) + cot(βij)

(6.4)

The tension term Eit , is the Laplace-Beltrami operator over the
neighborhood of each vertex xi of the front (Meyer et al., 2002). This is
basically a smoothing operator that is applied to the balloon after each
iteration.

In order to guarantee that the balloons do not penetrate each other,
the method detects collisions among the destinationvertices (the vertices
of the next k+ 1 iteration) before the evolution phase. As is usual in these
problems, the intersection between the bounding boxes of the destination
fronts is checked to speed up the detection. The vertices of the intersecting
triangles are removed from the evolution by not allowing them to move,

i.e., x
(k+1)
i = x

(k)
i .

6.2.2.3 Gradient modulation term: κi

To prevent the balloon from being excessively attracted if it is filling a hole,
and therefore going away the target surface, a new gradient modulation
term (κi) is introduced into the evolution process. This term is proportional

100 Chapter 6. Study of multi-balloons reconstruction

to the directional derivate at x
(k)
i (see Equation 6.5). In case a vertex is

about to escape through a hole, the gradient modulation term is simply
reversed, keeping the evolving vertex inside the model. This modulation
term is kept proportional to the cell size of the distance function to better
control the inflation process.

To distinguish between a hole and a cave (which gradients are very
similar from the vertex point of view), the nearer voxel of the distance
functions (different from the one that contains the vertex) that contains
target points is selected. If this point is in front of the vertex of the balloon,
then it is assumed that the vertex is about to enter a tunnel so it should
be allowed to advance, otherwise the vertex is in a hole and it must be
retracted to avoid the balloon escapes through it. In order to speed up the
process, only voxels within a certain distance from the vertex are taken into
account; in the tests, the search radius has been fixed to three times the
cell size.

κi = δ


1.0 in a tunnel

1− 2ni
>∇i

3
in a hole

 (6.5)

where δ is the size of the distance field cell that contains the vertex.

6.2.2.4 Local adaptive remeshing

To allow the balloon to evolve in open areas and reconstruct finer details,
regions of the balloon that are not near enough the model are subdivided.
Each of these “fronts” is marked for subdivision if its area is much greater
than expected for the level of refinement of the distance field, in proportion
to the number of triangles of the front.

The mesh quality is guaranteed by remeshing fronts as they evolve,
combining the mesh smoothing operator described in Equation 6.4 with a
connectivity optimizer similar to the presented by (Vorsatz et al., 2003)
and (Botsch and Kobbelt, 2004).

The connectivity optimizers previously mentioned work in a very similar
way, by using a combination of edge collapses, splits and flips operations.
The overall process is as follows

Section 6.2. Multi-balloons 101

• An edge is split if it is larger than εmaxµ.

• An edge is collapsed if it is shorter than εminµ.

• An edge is flipped if it reduces the valence excess of the neighboring
triangles.

where µ is the objective edge length, satisfying that εmax > 2εmin (Vorsatz
et al., 2003). Concerning the values of these terms, (Botsch and Kobbelt,
2004) deduced that they should be set to εmax = 4

3 and εmin = 4
5 , although

it does not satisfy the (Vorsatz et al., 2003)’s proportion. In this work, and
in order to fulfill additional requirements, different values were used, as it
will be explained bellow.

Regarding the edge splits and collapses, when the original remeshing
operator is applied, the mesh resolution changes imposed by the hierarchical
distance field are lost, since the operator tends to create an uniform mesh.
In this work, a reduction of the mesh resolution (edge collapse) avoids
recovering fine details while augmenting the resolution means larger systems
to be solved as well as to allow the balloon to grow through holes. On the
other hand, an increment of the resolution (by edge splitting) in very wide
areas reduces the stability of the system.

In order to overpass these limitations, the following modification is
proposed: instead of being εmin and εmax the minimum and maximum
edge lengths, they have slightly different meanings: they represent the
minimum and maximum scaling factors for the average edge length of
the neighborhood of each edge. For stability purposes, the objective edge
length µ has been set to the minimum cell’s size of the distance function,
so µ = δmin; this guarantees that almost degenerated triangles do not
affect the overall mesh resolution . The value of both εmin and εmax were
also relaxed in order to allow a softer resolution change in the mesh after
several consecutive iterations of the method. It was found that εmin = 3

5 and
εmax = 11

6 works well for most of the models. The proposed local adaptive
remeshing operator is listed in Algorithm 6.2 and a comparison between
it and the uniform remeshing (Vorsatz et al., 2003; Botsch and Kobbelt,
2004) is shown in Figure 6.7, while Figure 6.8 shows another example of
the effects of the new operator.

The optimization of the valence of each vertex makes that most of the
vertices have a valence of six. For two neighboring triangles 4 (a, b, c) and

102 Chapter 6. Study of multi-balloons reconstruction

Algorithm 6.2 Local adaptive remeshing operator

1: for iter times do
2: Let σi be the average length of the Nbhd(edgei)
3: Collapse all edges shorter than εmin max(σi, µ)
4: Split all edges larger than εmax max(σi, µ)
5: Flip edges if the total valence excess is reduced
6: end for

(a) Uniform remeshing (b) Local adaptive remeshing

Figure 6.7: Comparison of the uniform remeshing operator (a)
and the proposed local adaptive remeshing operator (b) on the
reconstruction of the Stanford Bunny model. Note that the
proposed operator preserves the different local resolutions, at the
time that unifies the triangle size of similar zones.

4 (a, b, d), the operator flips the edge from a to b if this operation reduces
the total valence excess6:

∑
p∈{a,b,c,d}

(vp − 6)2 (6.6)

In order to reduce the computation of Equation 6.6 before and after
edge flipping, in this work a simpler expression was deduced. Edge flipping
reduces the valence of vertices a and b, while increasing the valence of c
and d, so an edge must be flipped if

6As a notation comment, in this section vx will denote the valence of vertex x.

Section 6.2. Multi-balloons 103

Figure 6.8: Detail of the effects of the local adaptive remeshing
operator proposed in this work. Note that the resolution changes
smoothly through the mesh thanks to the new average objective
edge length.

∑
p∈{a,b,c,d}

(vp − 6)2 > (va − 1− 6)2 + (vb − 1− 6)2

+(vc + 1− 6)2 + (vd + 1− 6)2

(6.7)

Expanding out each expression of Equation 6.7, rearranging the terms
and simplifying leads to the simpler condition

va + vb > 2 + vc + vd (6.8)

At the end of the evolution process, fine details may have not been
reconstructed yet due to the resolution of the mesh near the features.
The general process to extract these details consists on increasing the
mesh resolution and let the model evolve some few additional times.
Previous issues regarding instabilities in the evolution process (due to
the disproportion between the mesh resolution and the distance field
resolution) are not present in this moment, since the balloons are sufficiently
closed to the target surface. Regarding the resolution increment, instead
of refining again the distance function, it was found that is easier and
more memory efficient to simply subdivide large triangles. The uniform
remeshing operator previously tested was used for this task, since it
automatically subdivide edges larger than a threshold. The objective edge
length is set to be the one of the smallest triangles currently present in the
model.

104 Chapter 6. Study of multi-balloons reconstruction

6.2.3 Topology change

Topology recovery is a desirable feature of a surface reconstruction
algorithm. For example, the Intelligent Balloon (Duan and Qin, 2001)
automatically increases the genus of the model each time two regions collide.
To gain a higher control over the genus of the model, in (Sharf et al., 2006)
fronts are stopped and then merged at the end of the reconstruction under
user indication. As mentioned before, the concept of fronts as not adjusted
regions of the balloon, is only used in this phase, during collision detection,
holes detection and genus change.

6.2.3.1 Genus

The proposed multi-balloons method takes a step forward and provides an
heuristic to determine if two colliding mesh components should be merged
or not. Given that balloons are placed inside independent regions of the
distance field, it is reasonable to use the size of the front as a parameter
for topology change. If two fronts of the same balloon are colliding, or if
several balloons were placed in a very long, tube like region, the area of the
fronts will not only be similar but also much larger than the cell size of the
distance field. On the other hand, fronts too small are much less probable to
be reconstructing the same region, thus, they do not need a genus change.

The first step for topology control is the detection of the regions in
collision. A full description of collision detection is out of the scope of
this thesis, but a review of the most common methods can be found in
(Borro, 2003). Basically, collision detection is performed at the end of each
evolution cycle; colliding components are removed from the evolution and
they are retracted to their initial position. Given the fact each balloon
must be tested against itself and the rest, it may be a very slow process. To
speed up this test, only active fronts are included in the detection. Then,
the intersection of the bounding boxes of such regions is tested and only
regions with intersecting bounding boxes are actually tested, a common
practice in this kind of problem.

When either an automatic genus change is detected or the user chooses
to increase the genus of the model, the nearest pair of vertices from the
two fronts to be merged is found. The topology change process is the
same presented by (Duan and Qin, 2001; Duan, 2003): the neighborhoods

Section 6.2. Multi-balloons 105

of these two vertices are aligned to face toward each other, and their
one-neighborhoods is put into correspondence. If needed, a neighborhood
is refined to match the number of vertices of the larger one. Then, the two
vertices are removed and their neighborhoods are reconnected as shown
in Figure 6.9. Finally, the new connecting region is relaxed using the
smoothing operator described in Section 6.2.2.2.

Figure 6.9: Topology change. Triangle fans (a) are first projected
(b), oriented (c) and the number of triangles is equaled (d).
Genus change is done by removing the neighboring triangles and
reconnecting the two neighborhoods (e, f). (Image from (Duan,
2003)).

Illustrating the previous exposition, and as an overview of most of the
concepts previously exposed, Figure 6.10 shows the reconstruction of a
high-genus synthetic model, starting with four seeds.

Figure 6.10: Reconstruction of a high-genus synthetic model.
Colliding fronts are merged to increase the genus of the deformable
model.

106 Chapter 6. Study of multi-balloons reconstruction

6.2.3.2 Holes

By its definition, a balloon is a watertight surface, so no holes are present.
The approach used to choose between intruding into a tunnel or not can be
also used to detect holes in the mesh as a post-processing task. Those mesh
zones of the reconstructed model that are not near enough to any input
point should be considered as to be filling a hole. Once those zones have
been detected, the user may choose to retain them or to recover the hole.
For this last operation, points around the hole are projected onto the mesh,
equaling the resolution of the mesh to the points’. After it, the triangles
inside can be removed to recovered the hole.

6.3 Experiments and results

Figure 6.11 shows the evolution of several balloons inside the Hand model.
As balloons collide they are merged, eventually increasing the genus of the
model. It can be seen that, for this model, the current evolution process is
not strong enough to fully recover the wrist region.

Note that times shown are particularly high for several reasons. First,
this implementation is not parallel yet because the mesh library used
(OpenMesh (Botsch et al., 2002)) is not thread-safe. Also, the method is
not fully automatic in its current state, so some manual operations must
be done, incrementing the time needed for the reconstruction. For the same
reason, the visualization of the inflation process is required, introducing the
rendering into the timing. However, as it was mentioned in the introduction,
this chapter describes the proposal of a new method more focused on the
extraction of global properties and the topology of the model.

Figure 6.12 shows the final reconstruction of the Stanford Dragon
model. Two independent balloons were inflated inside the points cloud,
and the distance field reached two refinement levels. The total number of
triangles of the reconstructed model is 90730, with 45367 vertices, about a
10% the size of the input points set. As an illustration, Figure 6.13 shows
several stages of the reconstruction of this model.

Section 6.3. Experiments and results 107

Figure 6.11: Multiple balloons evolving to reconstruct the Hand
model (sequence is from left to right, and top to bottom). The
total reconstruction time is about 7 minutes.

Figure 6.12: Reconstruction of the Stanford Dragon model
using two initial balloons. Approximated reconstruction time: 5
minutes.

108 Chapter 6. Study of multi-balloons reconstruction

Figure 6.13: Overlapped reconstruction stages (shown with
different colors) for the Stanford Dragon model using two
balloons. The seeds evolve recovering the coarser sections of the
model, then merge and continue evolving and refining until the
Dragon is completely reconstructed.

Figure 6.14: Reconstruction of the Horse model: (left) extracted
mesh without the final fitting, (right) the mesh resolution is
increased and a final fitting finishes the reconstruction.

Section 6.4. Discussion 109

6.4 Discussion

The present study is an example of the use of dynamic techniques in
surface reconstruction. The main goal of this section has been the study of
a multi-balloons technique that can be used in a parallel fashion. This
approach is particularly useful in complex objects, that present a high
genus, or that are composed by several regions (connected or not). By
placing multiple seeds along the model, it is possible to better recover the
global properties and the topology of the target object, before extracting
finer or less relevant details.

Tests performed provide a clear example that the approach is valid
and may help in the reconstruction of more complex models. In those
experiments, the execution time was not a priority, although it is clear
that it must be improved for a real world use. Also, the parallel
implementation of the method was not possible given that the mesh library
used (OpenMesh) is not currently thread-safe.

Regarding the evolution process of the balloons, it was design having
in mind the previous consideration: coarser regions must be recovered
before finer ones. In this sense, a new global evolution was designed so
it takes into account the global properties of the deformable model. This
separates the commonly used attraction and tension terms, leading to a
local interpretation of the distance to the target surface (the attraction
term) and a global deformation control of the balloon (the tension term).
This approach, combined with the gradient modulation factor and the
hole/tunnel identification, becomes a convenient evolution function. By the
time this work is being written, the main drawback of this approach is its
execution time: the global tension term is currently very time consuming
in relation with the rest of the process.

Additionally, a local adaptive remeshing operator has been presented.
The goal of this operator is to guarantee the mesh quality at the time that
it keeps resolution changes across the mesh, originated by the refinement
of the distance field function. The use of this local adaptive remeshing
avoids the mesh to be refined unnecessarily, creating a larger and unstable
system. Some other post-processing tools have been proposed (although
not implemented yet), including hole identification and automatic genus
increment.

110 Chapter 6. Study of multi-balloons reconstruction

Finally, several aspects of this chapter require a deeper study in
the future, such as the fully automatization of the process and an
overall optimization of the reconstruction process, including the use of a
thread-safe library that allows a parallel implementation of the method.

Part III

Conclusions

Chapter 7

Conclusions and future work

By three methods we may learn wisdom:
first, by reflection, which is noblest;

second, by imitation, which is easiest;
and third by experience, which is the bitterest

Confucius

7.1 Conclusions

This work studies the application of parallelization techniques to the surface
reconstruction problem. The main contributions of this work are focused
on the design and development of parallel methods that take advantage
of the multi-core architecture of CPUs, but mainly of the high processing
power of the modern graphic hardware, as well as the optimization of all
the phases of such methods for each particular implementation.

It has been shown that local triangulations are very suitable for
parallelization, given its independent nature. In this line, an existing
interpolating reconstruction method has been studied in this work, given
it is fully local and a simple method.

Taking this study as a start point, a new parallel surface reconstruction
method, called GPU Local Triangulation (GLT), has been developed and
three different implementations are presented: one in CPU for reference,
and two for the graphic hardware, employing shaders and CUDA. The
different phases of GLT were optimized for each implementation and some
of them improved in terms of quality with respect to the original work.

113

114 Chapter 7. Conclusions and future work

The central phase of GLT, the neighborhood validation, tests if a
neighbor is in the Voronoi region of a point or not. In this work, a full
explanation of this function is given, and it has been mathematically proved
that, regardless of the validation order, the test will not discard any valid
Delaunay neighbor, leading to a parallel design of the function, which is
particularly useful in the shaders implementation.

By definition, interpolating techniques, such as GLT, are not very
robust against noise and outliers. Points preprocessing is a common way to
solve these issues. In this work, the previous points consolidation operators
LOP and WLOP have been studied. By taking advantage of the extended
local support neighborhoods (eLSN), a new operator, called Parallel WLOP
(PWLOP), has been designed, reducing the processing time needed by
the operator in its CPU implementation. Additionally, and thanks to this
new method, a CUDA implementation of the operator is now possible,
dramatically improving the performance with respect to the original CPU
implementations.

Using PWLOP as a preprocessing phase, the GLT receives a cleaner
points cloud as input, avoiding the implicit problem that interpolating
methods have with noisy point clouds. In this way, not only the quality
of the computed surface is improved, but since the consolidated points are
a subset of the original one, the processing time of the reconstruction may
also be reduced.

Surface reconstruction based on dynamic techniques were also studied.
In this case, it has been seen that the use of multiple evolving balloons
recovers the shape and topology of a model in a more intuitive and natural
way thanks that it is an actual coarse-to-fine reconstruction. This approach
would also lead to a parallel implementation where each balloon freely
evolves, independently from other ones. As additional characteristic of this
method, it guarantees a watertight surface.

Finally, several additional tools for mesh processing has been presented
along with the multiballoons definition: a remeshing operator for
non-uniform resolutions, a hole detection tool and a metric for genus change
of the model.

Section 7.2. Future research lines 115

7.2 Future research lines

Several research lines are open to continue with this work:

• The GLT algorithm may produce some wrong triangulations. If four
points lie on the same circumference, the Delaunay triangulation is
not unique and therefore a hole may be created or two overlapping
triangles generated. As a solution, several approaches may be
taken, for example, a postprocessing mesh repairing operator or the
extension of the validity function in order to identify problematic
regions (where the four points passed as arguments belong to the
same circumference) and mark such points for later repairing.

• Recently, NVIDIA has announced their intentions to port CUDA to
the x86 platform. Also, OpenCL implementations in all the platforms
are becoming more stable and efficient. These advances may be used
to execute in the CPU the less parallel phases, such as neighborhood
sorting, taking advantage of a more general purpose processor, at the
time the graphic card is freed to receive more points, allowing the
phases to be overlapped for more efficiency.

• Currently, GLT uses a single sampling distance when computing the
neighborhoods of each point, which is also set to a fixed size. It would
be useful to study adaptive parameters for both the distance and
the neighborhood size, in order to improve the computation of the
candidate points in non-uniform areas.

• Although the GLT reconstruction core can be used in distributed
environments, the normal propagation stage is not suitable for such
configurations. This propagation may become very demanding in
terms of memory given the amount of information about mesh
connectivity that must be stored. The study of alternative methods
to overcome this issue is then necessary.

• Another stage that is executed in the CPU is the computation of
point neighborhoods and, at it has been seen in this work, it is a time
consuming task. A GPU implementation of a k-NN algorithm would
improve the time required for this step.

• Level-of-detail and multi-resolution meshes fall out of the scope of this
thesis, but it is interesting to study the advantages and disadvantages

116 Chapter 7. Conclusions and future work

of the application of hybrid reconstruction methods, such as the
proposed PWLOP + GLT, in those fields.

• The formulation of balloons should be improved to recover even better
the shape of the model, and it may also be interesting to find a
physical meaning to the two-step evolution process.

• The tension term of the evolution process is currently applied in a
global way. It has been seen that already adjusted regions of the
model tend to stabilize over the time, so it would be interesting
to reintroduce the idea of active fronts in order to reduce the time
required by the smoothing operators, combining it with the global
evolution to preserve the overall mesh quality and adjustment.

• Reconstruction using multiple evolving balloons has to be fully
parallelized. The mesh processing library used in the implementation
of balloons is not thread-safe, so the parallel implementation is not
possible yet.

As an example of another possible extensions, a recent work of
(Vasilakis and Fudos, 2009) takes the GLT method as a base for the
triangulation of an unorganized set of points. They extends the GLT
reconstruction by introducing a k-NN method in the vertex shaders,
as well as replacing the mesh storage by a direct visualization using
geometric shaders.

Part IV

Appendices

Appendix A

GPGPU computing

Insanity: doing the same thing over and over again
and expecting different results

Albert Einstein

With the arrival of programmable GPUs, many people have been using
them to perform more than special effects. GPGPU computing is a recent
field of work in computer science. The goal of this area is to take advantage
of the high computational power of modern graphic processors (which
currently is an order of magnitude higher than CPUs) and their specific
operation sets for computer graphics. Among the most common techniques
to perform GPGPU computing can be found the use of shaders and, more
recently, CUDA. Although other CUDA-like technologies exist, such as
Direct Computing (Microsoft) and OpenCL, only CUDA will be treated
in this section, since it was the one employed in the work, and the three
are very similar and most of the concepts can be shared.

GPGPU computing is mainly based in the SIMD (Single Instruction,
Multiple Data) programming model. In this model, multiple processing
units execute the same instruction over a data set under the supervision of
a common control unit, i.e., data is processed in parallel but synchronously.

119

120 Appendix A. GPGPU computing

A.1 Shaders

Shaders are special programs used to modified the fixed rendering pipeline,
employed in conjunction with graphic APIs1 such as OpenGL or Direct3D.
Depending on the graphic API used, the shader programming language to
be employed may vary. The most important shading languages are Cg©

(NVIDIA®), HLSL (Microsoft®) and GLSL (Khronos Group). Cg and
HLSL are very similar, and the three are C-like languages.

Different shader types exist to manipulate data in different stages of
the pipeline:

• Vertex shaders: transform 3D vertices (once per run) to the 2D
coordinate system of the viewport. Vertex shaders can modify the
position, color and texture coordinates of the vertices, but cannot
create new vertices

• Geometric shaders: assembles the geometric primitive that will be
sent to the rasterizer. These shaders can create or destroy vertices
and are usually employed for tessellation of parametric or implicit
surfaces.

• Fragment shaders: also known as pixel shaders, compute the color
of the individual pixels that come from the rasterizer. Fragment
shaders are very flexible and are commonly used in objects lighting
and texturing, special effects and even in non-polygonal based
visualization, such as volume rendering. Their main disadvantage is
that they cannot write data to a different pixel coordinate than the
one assigned by the rasterizer.

Given natural analogies with the SIMD model, shaders based GPGPU
computing usually makes use of fragment shaders to work. Although less
formal, it is easier to see how it works in a scheme:

• First, data is stored in textures, as if they were arrays. The only
limitations here are those self imposed by the texture structure: all
the elements must have the same structure and each of them can
stored up to four values of the same basic data type (floats, integers),

1API stands for Application Programming Interface.

Section A.1. Shaders 121

corresponding to each of the four color components: red, green, blue
or alpha channel.

• The viewport is configured appropriately to draw data. For example,
if the computation is one output per each input, the viewport must
be setup to have the same size as the texture. The rendering output is
set to be another texture, so results can be written back to memory.

• The fragment shader is enabled. Textures and any other individual
parameters are loaded.

• A textured rectangle is drawn to fulfill the viewport. In this way, each
rasterized pixel will correspond to a texel.

In this way, the fragment shader is executed for each element of the data
and the results are written to the specified texture that can be later read
or used as the input of another shader (thus avoiding the costly transfer to
and from the main memory).

Some common GPGPU applications are iterative processes of the form
of xi+1 = f(xi). In this case, a technique called ping–pong rendering is
commonly used. It consists in the use of two interchangeable textures of
the same size and structure, one for reading the data and one for writing;
after each iteration, their roles are simply swapped.

Fragment shaders impose some restrictions in the programming model
that must be taken into account:

• No random position scattering (writing). A fragment shader can only
write in the position specified by the rasterizer. For example, it is
not possible for a shader to store its results in different cells of
a grid; in this case, the value of each cell must be computed by
an individual shader and each shader must have the corresponding
rasterizer position. This follows that the viewport determines the
structure of the output.

• Only modern GPUs allow branching (execution bifurcations produced
by conditional statements and loops), but its use must be reduced
as much as possible in order to avoid high speed penalties. If two
threads of the same shader enter different regions of a branch, each
set is executed by the two threads but only the corresponding memory
states are kept for each one.

122 Appendix A. GPGPU computing

• Transfers between main memory and graphic memory must be
carefully scheduled to reduce bandwidth overhead.

• Current graphic hardware imposes different restrictions with respect
to the texture size. Initially these constrains included not only the
maximum size, but also that the size must be a power-of-two.
Nowadays this limitation has disappeared and the maximum size is
often 4096× 4096.

A.2 CUDA

CUDA™ (Computing Unified Device Architecture) is a C extension
developed by NVIDIA®, which allows a higher level of abstraction than
those obtained with shaders. CUDA capable devices can accelerate the
execution of computationally intensive programs exploiting the data level
parallelism of the executed algorithms. These devices can work together in
order to solve large problems and they always work within a host (a PC).
This technology was introduced in desktop computers with the G80 GPU
in late 2006 that was included in the GeForce® 8800 graphics card family.
At the same time, NVIDIA launched its Tesla® dedicated GPGPU device.
Basically, the only difference between a Tesla device and a normal GPU
is that the first lacks a display output. Recent Tesla devices based on the
Fermi™ architecture also have four times more arithmetic precision than its
graphics device equivalent.

CUDA has solved some of the main disadvantages of GPGPU
programming through shaders, e.g. the fixed-position scattering limitation.
This has allowed numerous algorithms to became easier to implement in the
GPU. Regardless of this ease, it is still necessary to design the algorithms
to use efficiently the resources of the CUDA device.

Additionally to CUDA, other similar technologies exist, such as Direct
Computing (Microsoft®) and OpenCL™ (Khronos Group). The following
sections will introduce some basic concepts on CUDA, however, most of
them are applicable to other computing technologies.

Section A.2. CUDA 123

A.2.1 CUDA Program Structure

A CUDA program is built using both regular functions, that are executed
in the host, and CUDA functions, called kernels, that are executed in the
CUDA device. These functions are separately compiled using the standard
C++ compiler for the CPU code and the NVIDIA nvcc compiler for the
CUDA kernels.

CUDA kernels, when called, are executed many times in parallel using
the threading capabilities of the device. As shown in Figure A.1, these
threads are grouped in blocks, that at the same time are grouped in a grid.
Grids and blocks are one, two or three dimensional arrays and their size is
only limited by the CUDA device.

Figure A.1: Thread hierarchy (image from (NVIDIA, 2010)).

The size of the grid and the blocks can be set by the user in every kernel
call. Each thread executes the same kernel code and has a unique ID that
can be accessed from the kernel giving a natural way to do computations
across the elements of a matrix.

124 Appendix A. GPGPU computing

A.2.2 Occupancy

When a group of threads is received to be executed, the multiprocessor
device splits them into warps that are individually scheduled. A warp
is a group of threads (32 by the time this memory was written) that
starts together at the same program address but that are free to branch
independently. A warp executes a command at a time, so full efficiency is
realized when all the threads of the warp follow the same instruction path.

Occupancy is the ratio of the number of active warps per multiprocessor
to the maximum number of possible active warps. It is an important metric
in determining how effectively the hardware is used: a higher occupancy
eases the device to hide memory latency and therefore helps to improve
performance. For more information about occupancy and CUDA programs
optimization, please refer to (NVIDIA, 2009).

A.2.3 CUDA Memory Model

CUDA devices have their own memory space and threads can not access
directly to the host memory. Instead, the data must to be transferred from
the host to the device in order to make the computations, and from the
device to the host to get the results.

Figure A.2 shows an overview of the device memory model. Each thread
has a private local memory where local variables are stored. At block level,
there is a shared memory visible to all threads of the block which size
can be set dynamically before the kernel invocation. Finally, there is a
global memory that can be randomly accessed by all threads and it is
persistent across kernel executions. There are also two read-only memories,
i.e constant memory and texture memory. Constant memory is a small
space that can be accessed randomly very fast. In contrast, texture memory,
which inherits from graphics applications, is a large memory that can be
organized in up to three dimensions. It is locally cached and can be accessed
through a hardware interpolator.

Contrary to traditional shaders, CUDA threads can randomly read and
write in any position of the global memory. However, this memory has
a big access latency and should be used with care. Although having many
threads can hide the access latency, the global memory has a limited amount
of bandwidth and can be easily collapsed making computing units go idle.

Section A.2. CUDA 125

Figure A.2: Memory hierarchy.2

This problem can be solved moving the data from global memory to shared
memory, which has much smaller latency, and using it across the threads
of the same block.

In conclusion, in order to use efficiently the CUDA device, special care
should be taken in the data level parallelism of the algorithm and in the
memory access patterns, trying to minimize the memory transfers between
the host and the device. For these reasons, many existing algorithms can
not be directly implemented in CUDA, needing new approaches that exploit
the benefits of this architecture.

2Courtesy: NVIDIA

126 Appendix A. GPGPU computing

Appendix B

Generated Publications

Many of life’s failures are people who did not realize
how close they were to succes when they gave up

Thomas Edison

Journals

Buchart, C., Borro, D., and Amundarain, A. “GPU Local
Triangulation: an interpolating surface reconstruction algorithm”.
Computer Graphics Forum, Vol. 27, N. 3, pp. 807–814. May, 2008.

San Vicente, G., Buchart, C., Borro, D., and Celigüeta, J. T.
“Maxillofacial surgery simulation using a mass-spring model derived
from continuum and the scaled displacement method.” International
journal of computer assisted radiology and surgery, Vol. 4, N. 1, pp.
89–98. January, 2009.

Book chapters

Buchart, C., Amundarain, A., and Borro, D. 3-D surface geometry
and reconstruction: Developing concepts and applications, chapter
Hybrid surface reconstruction through points consolidation. IGI
Global. 2011. (Sent and under revision).

127

128 Appendix B. Generated Publications

Conferences

Buchart, C., Borro, D., and Amundarain, A. “A GPU interpolating
reconstruction from unorganized points”. In Posters Proceedings of
the SIGGRAPH 2007. San Diego, CA, USA. August 5-9, 2007.

San Vicente, G., Buchart, C., Borro, D., and Celigüeta, J. T.
“Maxillofacial surgery simulation using a mass-spring model derived
from continuum and the scaled displacement method.” In Posters
Proceedings of Annual Conference of the International Society for
Computer Aided Surgery (ISCAS’08). Barcelona, Spain. June, 2008.

Buchart, C., Borro, D., and Amundarain, A. “GPU Local
Triangulation: an interpolating surface reconstruction algorithm”. In
Proceedings of the EuroVis 2008, volume 27, pp. 807–814. Eindhoven,
The Netherlands. May 26-28, 2008.

Buchart, C., San Vicente, G., Amundarain, A., and Borro, D. “Hybrid
visualization for maxillofacial surgery planning and simulation”.
In Proceedings of the Information Visualization 2009 (IV’09), pp.
266–273. Barcelona, Spain. July 14-17, 2009.

Index

α-shapes, 16

Advancing frontal techniques, 14
Angle computation, 32

Cosine symmetry, 32
Approximating techniques, 11, 16

Ball Pivoting, 15
Balloons, 90, 91

Competing fronts, 90, 91
Fronts, 90, 92
Intelligent balloon, 91

Bitonic Merge sort, 43
Bubble sort, 48

Cocone algorithm, 14
Robust Cocone, 14
Tight Cocone, 14

CUDA, 122
Kernels, 123
Warp, 124

d-simplex, 12
Data structures

Angles texture TP , 42
Candidate points array CR, 47
Candidate points ring texture

TR, 44
Candidate points texture TQ, 40
Neighborhood size array Cm, 47
Normals array CN , 47

Normals texture TN , 39
Points array CP , 47
Points indexing texture TI , 40
Points texture TP , 39
Projected points array CQ′ , 47
Projected points textureTQ′ , 42
Ring of candidate points TR, 33

Delaunay triangulation, 12, 18
2D validity test, 34
2D validity test proof, 36
Lower dimensional method, 14,

33
DeWall algorithm, 18
Discrete membranes, 17
Distance function field, 95
Dynamic techniques, 89

Gabriel graph, 13
Global triangulation, 13
GPGPU, 5
GPU, 5
Gradient Vector Flow, 90

Implicit function, 16
Interpolating techniques, 11, 12
Iso-surface, 16

k-NN, 25
ANN, 27
Clustering, 26
kd-trees, 27

129

130 INDEX

Level set method, 90
Local support neighborhood, 69

Extended LSN, 69
Local triangulation, 12

Delaunay, 12, see also Delaunay
triangulation

LOP, 66
Extended WLOP, 70
Parallel WLOP, 70
Weighted LOP, 68

Marching Cubes, 18
Marching tetrahedra, 19

Medial axis, 13
Medial axis transform, 13

Multiballoons, 93

Normal
Estimation, 28
Orientation, 30

Parallelization, 24
Poisson reconstruction, 17, 58

GPU implementation, 20
Power Crust, 13

Sampling criteria, 25
Nyquist-Shannon sampling

theorem, 25
Satisfaction function field, 95
Shaders, 120

Fragment, 120
Geometric, 120
Occupancy, 124
Ping pong, 45
Vertex, 120

Spiraling Edge, 15
Surface reconstruction, 3

T-Snakes, 90

Voronoi diagram, 12

References

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and T. Silva, C.
“Computing and Rendering Point Set Surfaces”. IEEE Transactions
on Visualization and Computer Graphics, Vol. 9, N. 1, pp. 3–15. 2003.

Allégre, R., Chaine, R., and Akkouche, S. “A flexible framework for surface
reconstruction from large point sets”. Computers and Graphics, Vol.
31, N. 2, pp. 190–204. 2007.

Alliez, P., Cohen-Steiner, D., Tong, Y., and Desbrun, M. “Voronoi-based
variational reconstruction of unoriented point sets”. In Proceedings of
the Eurographics Symposium on Geometry Processing (SGP’07), pp.
39–48. Barcelona, Spain. July 4-6, 2007.

Amenta, N., Choi, S., Dey, T. K., and Leekha, N. “A simple algorithm for
homeomorphic surface reconstruction”. In Proceedings of the Annual
Symposium on Computational Geometry, pp. 213–222. Hong Kong,
China. June 11-14, 2000.

Amenta, N., Choi, S., and Kolluri, R. “The Power Crust”. Sixth ACM
Symposium on Solid Modeling and Applications, pp. 249–260. 2001.

Attene, M. and Spagnuolo, M. “Automatic Surface Reconstruction from
Point Sets in Space”. Computer Graphics Forum, Vol. 19, N. 3, pp.
457–465. 2000.

Bajaj, C. L., Bernardini, F., and Xu, G. “Automatic Reconstruction of
Surfaces and Scalar Fields from 3D Scans”. In Proceedings of the
SIGGRAPH 1995, pp. 109–118. Los Angeles, CA, USA. August 6-11,
1995.

131

132 REFERENCES

Batcher, K. E. “Sorting networks and their applications”. In Proceedings
of the Spring Joint Computer Conference, pp. 307–314. April 30–May
2, 1968.

Bentley, J. L. “K-d trees for semidynamic point sets”. In Proceedings
of the Annual Symposium on Computational Geometry, pp. 187–197.
Berkley, CA, USA. June 6-8, 1990.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C. T., and Taubin,
G. “The Ball-Pivoting Algorithm for Surface Reconstruction”. IEEE
Transactions on Visualization and Computer Graphics, Vol. 5, N. 4,
pp. 349–359. 1999.

Besora, I., Brunet, P., Callieri, M., Chica, A., Corsini, M., Dellepiane, M.,
Morales, D., Moyés, J., Ranzuglia, G., and Scopigno, R. “Portalada:
A virtual reconstruction of the entrance of the ripoll monastery”. In
Proceedings of the International Symposium on 3D Data Processing,
Visualization and Transmission. Atlanta, GA, USA. June 18-20, 2008.

Bloomenthal, J. “Polygonization of implicit surfaces”. Computer Aided
Geometric Design, Vol. 5, N. 4, pp. 341–355. October, 1988.

Borro, D. Colisiones en estudios de mantenibilidad con restitución de
esfuerzos sobre maquetas digitales masivas y compactas. PhD thesis,
Escuela Superior de Ingenieros, Universidad de Navarra. 2003.

Botsch, M. and Kobbelt, L. P. “A remeshing approach to multiresolution
modeling”. In Proceedings of the Eurographics Symposium on
Geometry processing (SGP ’04), pp. 185–192. Nice, France. July 8-10,
2004.

Botsch, M., Steinberg, S., Bischoff, S., and Kobbelt, L. P. “Openmesh-a
generic and efficient polygon mesh data structure”. In Proceedings of
the OpenSG Symposium. January, 2002.

Buchart, C., Amundarain, A., and Borro, D. 3-D surface geometry and
reconstruction: Developing concepts and applications, chapter Hybrid
surface reconstruction through points consolidation. IGI Global. 2011.
(Sent and under revision).

Buchart, C., Borro, D., and Amundarain, A. “A GPU interpolating
reconstruction from unorganized points”. In Posters Proceedings of
the SIGGRAPH 2007. San Diego, CA, USA. August 5-9, 2007.

REFERENCES 133

Buchart, C., Borro, D., and Amundarain, A. “GPU Local Triangulation: an
interpolating surface reconstruction algorithm”. Computer Graphics
Forum, Vol. 27, N. 3, pp. 807–814. May, 2008.

Buchart, C., Borro, D., and Amundarain, A. “GPU Local Triangulation: an
interpolating surface reconstruction algorithm”. In Proceedings of the
EuroVis 2008, volume 27, pp. 807–814. Eindhoven, The Netherlands.
May 26-28, 2008.

Buchart, C., San Vicente, G., Amundarain, A., and Borro, D. “Hybrid
visualization for maxillofacial surgery planning and simulation”.
In Proceedings of the Information Visualization 2009 (IV’09), pp.
266–273. Barcelona, Spain. July 14-17, 2009.

Buck, I. and Purcell, T. J. A Toolkit for Computation on GPUs (GPU
Gems), chapter 37, pp. 621–636. Addison-Wesley. 2004.

Cano, P., Torres, J. C., Melero, F. J., Mart́ın, D., Moreno, J.,
and España, M. “Generación automatizada mediante escáner
láser de documentación de patrimonio histórico”. In Proceedings
of the Congreso Internacional de Rehabilitación del Patrimonio
Arquitectónico y Edificación. 2008.

Cignoni, P., Montani, C., Perego, R., and Scopigno, R. “Parallel 3D
Delaunay Triangulation”. Computer Graphics Forum, Vol. 12, N. 3,
pp. 129–142. August, 1993.

Crossno, P. and Angel, E. “Spiraling edge: fast surface reconstruction from
partially organized sample points”. In Proceedings of the Conference on
Visualization (VIS’99), pp. 317–324. Los Alamitos, CA, USA. October,
1999.

Delaunay, B. “Sur la sphere vide. A la mémoire de Georges Voronoi”.
Bulletin of Academy of Sciences of the USSR, Vol. 7, pp. 793–800.
1934.

Dey, T. K. and Goswami, S. “Tight cocone: A water-tight surface
reconstructor”. Journal of Computing and Information Science in
Engineering, pp. 127–134. 2003.

Dey, T. K. and Goswami, S. “Provable surface reconstruction from noisy
samples”. Computational Geometry: Theory and Applications, Vol. 35,
N. 1, pp. 124–141. 2006.

134 REFERENCES

Duan, Y. Topology adaptive deformable models for visual computing. PhD
thesis, State University of New York. 2003.

Duan, Y. and Qin, H. “Intelligent balloon: a subdivision-based deformable
model for surface reconstruction of arbitrary topology”. In Proceedings
of the ACM symposium on Solid modeling and applications (SMA’01),
pp. 47–58. New York, NY, USA. 2001.

Esteve, J., Brunet, P., and Vinacua, A. “Approximation of a variable
density cloud of points by shrinking a discrete membrane”. Computer
Graphics Forum, Vol. 24, N. 4, pp. 791–808. 2005.

Esteve, J., Vinacua, A., and Brunet, P. “Piecewise algebraic surface
computation and smoothing from a discrete model”. Computer Aided
Geometric Design, Vol. 24, N. 6, pp. 357–372. 2008.

Favreau, J.-M. “Marching cube cases”. 2010.

Friedman, J. H., Bentley, J. L., and Finkel, R. A. “An algorithm for finding
best matches in logarithmic expected time”. ACM Transactions on
Mathematical Software, Vol. 3, N. 3, pp. 209–226. 1977.

Gopi, M., Krishnan, S., and Silva, C. T. “Surface Reconstruction based
on Lower Dimensional Localized Delaunay Triangulation”. Computer
Graphics Forum, Vol. 19, N. 3, pp. 467–478. September, 2000.

Gueziec, A. and Hummel, R. “Exploiting triangulated surface extraction
using tetrahedral decomposition”. IEEE Transactions on Visualization
and Computer Graphics, Vol. 1, N. 4, pp. 328–342. 1995.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W.
“Surface Reconstruction from Unorganized Points”. In Proceedings of
the SIGGRAPH 1992, pp. 71–78. 1992.

Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. “Consolidation
of Unorganized Point Clouds for Surface Reconstruction”. ACM
Transactions on Graphics, Vol. 28, N. 5, pp. 176–182. 2009.

Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. “Points
consolidation API”. 2010.

Ibañez, L., Schroeder, W., Ng, L., and Cates, J. The ITK software guide.
Insight Software Consortium, second edition. 2005.

REFERENCES 135

Jalba, A. C. and Roerdink, J. B. T. M. “Efficient surface reconstruction
from noisy data using regularized membrane potentials.” IEEE
Transactions on Image Processing, Vol. 18, N. 5wan, pp. 1119–34. May,
2006.

Jones, M. “3D distance from a point to a triangle”. 1995.

Kass, M., Witkin, A., and Terzopoulos, D. “Snakes: Active contour
models”. International Journal of Computer Vision, Vol. 1, N. 4, pp.
321–331. 1987.

Kazhdan, M., Bolitho, M., and Hoppe, H. “Poisson surface reconstruction”.
In Proceedings of the Eurographics Symposium on Geometry Processing
(SGP’06), pp. 61–70. Cagliari, Sardinia, Italy. June 26-28, 2006.

Kipfer, P. and Westermann, R. “GPU Construction and Transparent
Rendering of Iso-Surfaces”. In Greiner, G., Hornegger, J., Niemann,
H., and Stamminger, M., editors, Proceedings of the Vision, Modeling
and Visualization 2005, pp. 241–248. 2005.

Klein, T., Stegmaier, S., and Ertl, T. “Hardware-accelerated
Reconstruction of Polygonal Isosurface Representations on
Unstructured Grids”. In Proceedings of the Pacific Conference
on Computer Graphics and Applications (PG’04), pp. 186–195. 2004.

Kohout, J. and Kolingerová, I. “Parallel Delaunay triangulation based on
circum-circle criterion”. Proceedings of the 18th spring conference on
Computer graphics - SCCG ’03, Vol. 1, N. 212, p. 73. 2003.

Levin, D. “Mesh-independent surface interpolation”. Geometric Modeling
for Scientific Visualization, Vol. 3, pp. 37–49. 2003.

Li, G., Liu, L., Zheng, H., and Mitra, N. J. “Analysis, reconstruction and
manipulation using arterial snakes”. ACM Transactions on Graphics,
Vol. 29, N. 6, pp. 152:1–152:10. December, 2010.

Linsen, L. and Prautzsch, H. “Local Versus Global Triangulations”.
In Proceedings of the Eurographics 2001 (Short Presentations), pp.
257–264. Manchester, England. September 5-7, 2001.

Lipman, Y., Cohen-Or, D., and Levin, D. “Data-Dependent MLS for
Faithful Surface Approximation”. In Proceedings of the Eurographics

136 REFERENCES

Symposium on Geometry Processing (SGP’07), pp. 59–67. Barcelona,
Spain. July 4-6, 2007.

Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H.
“Parameterization-free projection for geometry reconstruction”.
ACM Transactions on Graphics, Vol. 26, N. 3, p. 22. July, 2007.

Lorensen, W. E. and Cline, H. E. “Marching Cubes: A High Resolution 3D
Surface Construction Algorithm”. In Proceedings of the SIGGRAPH
1987, pp. 163–169. 1987.

McInerney, T. and Terzopoulos, D. “Topology Adaptive Deformable
Surfaces for Medical Image Volume Segmentation”. IEEE Transactions
on Medical Imaging, Vol. 18, pp. 840–850. 1999.

Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. “Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds”. 2002.

Miller, J. V., Breen, D. E., Lorensen, W. E., O’Bara, R. M., and Wozny,
M. J. “Geometrically deformed models: a method for extracting closed
geometric models form volume data”. SIGGRAPH Comput. Graph.,
Vol. 25, N. 4, pp. 217–226. 1991.

Mount, D. M. and Arya, S. “ANN: a library for approximate nearest
neighbor searching”. 2010.

Nagai, Y., Ohtake, Y., and Suzuki, H. “Smoothing of Partition of Unity
Implicit Surfaces for Noise Robust Surface Reconstruction”. Computer
Graphics Forum, Vol. 28, N. 5, pp. 1339–1348. July, 2009.

NVIDIA. NVIDIA CUDA C Programming Best Practices Guide. 2009.

NVIDIA. NVIDIA CUDA C Programming Guide. 2010.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H. P. “Multi-level
partition of unity implicits”. ACM Transactions on Graphics, Vol. 22,
pp. 463–470. 2005.

Osher, S. and Sethian, J. A. “Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations”. Journal of
Computational Physics, Vol. 79, N. 1, pp. 12–49. 1988.

REFERENCES 137

Pauly, M., Gross, M., and Kobbelt, L. P. “Efficient simplification
of point-sampled surfaces”. In Proceedings of the Conference on
Visualization (VIS’02), pp. 163–170. Washington, DC, USA. 2002.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B., editors.
Numerical recipes, chapter 9, 11, pp. 585, 464–466. Cambridge
University Press, third edition. 2007.

Raman, S. and Wenger, R. “Quality isosurface mesh generation using an
extended marching cubes lookup table”. Computer Graphics Forum,
Vol. 27, N. 3, pp. 791–798. May, 2008.

Samozino, M., Alexa, M., Alliez, P., and Yvinec, M. “Reconstruction
with Voronoi centered radial basis functions”. In Proceedings of
the Eurographics Symposium on Geometry Processing (SGP’06), pp.
51–60. Cagliari, Sardinia, Italy. June 26-28, 2006.

San Vicente, G., Buchart, C., Borro, D., and Celigüeta, J. T. “Maxillofacial
surgery simulation using a mass-spring model derived from continuum
and the scaled displacement method.” In Posters Proceedings of
Annual Conference of the International Society for Computer Aided
Surgery (ISCAS’08). Barcelona, Spain. June, 2008.

San Vicente, G., Buchart, C., Borro, D., and Celigüeta, J. T. “Maxillofacial
surgery simulation using a mass-spring model derived from continuum
and the scaled displacement method.” International journal of
computer assisted radiology and surgery, Vol. 4, N. 1, pp. 89–98.
January, 2009.

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards Real Time 3D Tracking
and Reconstruction on a GPU Using Monte Carlo Simulations”. In
Proceedings of the International Symposium on Mixed and Augmented
Reality (ISMAR’2010), pp. 185–192. Seul, South Korea. October 13-16,
2010.

Sankaranarayanan, J., Samet, H., and Varshney, A. “A Fast
k-Neighborhood Algorithm for Large Point-Clouds”. In Proceedings
of the IEEE/Eurographics Symposium on Point-Based Graphics, pp.
75–84. Boston, MA, USA. July 29-30, 2006.

Sethian, J. A. Level Set Methods and Fast Marching Methods (ISBN:
978-0521645577). Cambridge University Press. 1999.

138 REFERENCES

Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L. P., and Cohen-Or,
D. “Competing Fronts for Coarse-to-Fine Surface Reconstruction”.
Computer Graphics Forum, Vol. 25, N. 3, pp. 389–398. September,
2006.

Torres, J. C., Cano, P., Melero, J., España, M., and Moreno, J.
“Aplicaciones de la digitalización 3D del patrimonio”. In Proceeding
of Congreso Internacional de Arqueoloǵıa e Informática Gráfica,
Patrimonio e Innovación: Arqueológica 2.0. Sevilla, Spain. June 17-20,
2009.

Torres, J. C., Soler, F., Velasco, F., León, A., and Arroyo, G. “Marching
octahedra”. In Proceedings of the Congreso Español de Inform´ática
Gráfica (CEIG’09). San Sebastián, Spain. September 9-11, 2009.

Vasilakis, A. A. and Fudos, I. “Skeletal rigid skinning with blending patches
on the GPU”. Technical report, Department of Computer Science,
University of Ioannina, Ioannina, Greece. October 12, 2009.

Vermeer, P. J. Medial axis transform to boundary representation conversion.
PhD thesis, Purdue University. 1994.

Vorsatz, J., Rössl, C., and Seidel, H. P. “Dynamic remeshing and
applications”. In Proceedings of the ACM Symposium on Solid
Modeling and Applications (SMA’03), pp. 167–175. 2003.

Wang, J., Oliveira, M. M., Xie, H., and Kaufman, A. E. “Surface
reconstruction using oriented charges”. Computer Graphics
International 2005, pp. 122–128. 2005.

Xu, C. and Prince, J. L. “Snakes, Shapes, and Gradient Vector Flow”.
IEEE Transactions on Image Processing, Vol. 7, N. 3, pp. 359–369.
1998.

Zhang, L., Liu, L., Gotsman, C., and Huang, H. “Mesh reconstruction
by meshless denoising and parameterization”. Computers & Graphics,
Vol. 34, N. 3, pp. 198–208. June, 2010.

Zhao, H., Osher, S., and Fedkiw, R. “Fast Surface Reconstruction Using
the Level Set Method”. In Proceedings of the IEEE Workshop on
Variational and Level Set Methods, pp. 194–202. 2001.

REFERENCES 139

Zhou, K., Gong, M., Huang, X., and Guo, B. “Data-Parallel Octrees for
Surface Reconstruction”. IEEE Transactions on Visualization and
Computer Graphics, 2010. To appear.

	I Introduction
	Introduction
	Applications
	Data acquisition
	Objectives
	Dissertation organization

	State of the art
	Interpolating methods
	Delaunay triangulation
	Local triangulations

	Approximating methods
	Parallel triangulations
	Hardware accelerated algorithms

	II Proposal
	GPU Local Triangulation
	Introduction
	Sampling criteria
	Description of the method
	Preprocess phase – Computing the k-NN
	k-NN based on clustering techniques
	k-NN using kd-trees
	Final comments

	Parallel triangulation
	Phase 1 – Normal estimation
	Normals orientation

	Phase 2 – Projection
	Phase 3 – Angle computation
	Phase 4 – Radial sorting
	Phase 5 – Local triangulation
	2D validity test
	Proof

	Implementation using shaders
	Initial texture structures overview
	Texture assembly
	Phase 1 – Normal estimation
	Phases 2 and 3 – Projection and angle computation
	Phase 4 – Radial sorting
	Phase 5 – Local triangulation

	Implementation using CUDA
	Data structures
	Phase 4 – Radial sorting
	Phase 5 – Local triangulation

	Experiments and results
	CPU vs Shaders vs CUDA
	Reconstruction results
	Big models
	Comparison with an approximating method
	Application in the medical field
	Application in cultural heritage

	Discussion

	Parallel Weighted Locally Optimal Projection
	Previous works
	Locally Optimal Projection Operator
	Weighted Locally Optimal Projection Operator

	Parallel WLOP
	Implementation details

	Experiments and results
	Discussion

	Hybrid surface reconstruction: PWLOP + GLT
	Improving the input data set through points consolidation
	Results
	Discussion

	Study of multi-balloons reconstruction
	Dynamic techniques
	Classic balloons

	Multi-balloons
	Scalar function fields
	Evolution process
	Global and local fronts
	Two-step evolution
	Gradient modulation term: i
	Local adaptive remeshing

	Topology change
	Genus
	Holes

	Experiments and results
	Discussion

	III Conclusions
	Conclusions and future work
	Conclusions
	Future research lines

	IV Appendices
	GPGPU computing
	Shaders
	CUDA
	CUDA Program Structure
	Occupancy
	CUDA Memory Model

	Generated Publications
	Index
	References

