
Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

Parallel Mesh Clustering

Iurie Chiosa, Andreas Kolb, Nicolas Cuntz and Marvin Lindner

Institute for Vision and Graphics
University of Siegen

56076 Siegen, Germany

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Fast and qualitative clustering of large polygonal surface meshes still remains one of the most demanding fields in
mesh processing. Because existing clustering algorithms are very time-consuming, the use of parallel hardware,
i.e. the graphics processing unit (GPU), is a reasonable and crucial task in this domain. However, due to the
sequential nature of most of these algorithms this is hard to be achieved. In this paper we address the parallel
reformulation of the existing approaches and show a suitable GPU implementation for variational or hierarchical
parallel mesh clustering.
A boundary-based mesh clustering framework is proposed as a new clustering concept which provides all nec-
essary ingredients for parallel mesh clustering. Here we focus on a specific subtype of the variational clustering
algorithm which does not restrict the applicability of the approach as such but reveals much better performance
characteristics.
A parallel multilevel (ML) mesh clustering, for which several dual edges are collapsed in each step, is proposed
as an option to the classical ML clustering, where only one dual edge collapse is applied in each step.
We show how these algorithms can be entirely implemented (giving some non-trivial GPU-specific solutions) and
accelerated on GPU.
We demonstrate both approaches applying them to Centroidal Voronoi Diagram (CVD) based clustering. For
boundary-based mesh clustering we achieved speed up factors of 10 to 18.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing. I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Object hierar-
chies

1. Introduction

Fast processing of large polygonal surface meshes be-
comes more demanding as 3D model acquisition systems
can nowadays provide models with up to several millions
of faces. Most of the existing clustering algorithms, e.g.
[CSAD04], [CK08], have a sequential nature of processing,
thus for large meshes they become in many cases very time-
consuming.

The use of the parallel hardware, i.e GPU, for speeding up
these algorithms appears to be a reasonable and at the same
time a crucial task in this field.

However, commonly employed mesh clustering algorithm
such as Variational Clustering (VC) [CSAD04] is not suit-
able for a GPU implementation. The use of a global Priority

Queue (PQ) from which at each step a triangle is popped
and assigned to a cluster is the main obstacle in using it for
parallel computations.

The recently introduced multilevel mesh clustering ap-
proach [CK08] has shown to be a good solution in overcom-
ing the inherent problems of the variational and hierarchi-
cal clustering methods. Due to the locality of the decision
in the process of the optimization and because no priority
queue is used, the Energy Minimization by Local Queries
(EMLQ) algorithm proposed in [CK08] as a generalization
of the approximative Centroidal Voronoi Diagrams [VC04]
algorithm, can be used for a parallel clustering. The only
drawback of this algorithm lies in its limitation (imposed re-
quirements) on the energy functional. For the hierarchical
part of this framework a parallel identification of the optimal

c© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/033-040

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/033-040

Chiosa et al. / Parallel Mesh Clustering

dual edges would substantially improve the performance.
However, the procedure of one dual edge collapse in each
step, limits a generally required parallelism.

The contributions of our paper are:

• The boundary-based mesh clustering algorithm is pro-
posed as a new approach for a parallel cluster optimiza-
tion. The algorithm redefines the classical variational
clustering approach [CSAD04] and makes use of the idea
of local queries from [CK08], [VC04]. As a result the
new approach avoids using any priority queue for the clus-
ter optimization process. Additionally, no identification of
the starting seeds in each iteration is performed. At the
same time it preserves the proxy-based clustering concept,
thus allowing, as variational clustering, a wider range of
energy functionals to be used. In this form the algorithm
can be used in the optimization phase of the multilevel
mesh clustering [CK08], thus removing the requirement
on the special representation of the energy functional for
efficient computations.

• A new parallel multilevel clustering concept, for which
several dual edges are collapsed in each step, is proposed
for speeding up the multilevel mesh clustering on GPU.

• We show how both concepts can be entirely implemented
on GPU. For that, we propose a new mesh representation
to encode the geometry and the connectivity. That gives
all necessary means for a complete Variational, Hierarchi-
cal and Multilevel GPU-based mesh clustering. We also
give some non-trivial GPU-specific technical details.

The paper is organized as follows: After discussing related
work (Sec. 2), the Boundary-based Mesh Clustering concept
is presented (Sec. 3). Sec. 4 presents the Parallel Multilevel
Mesh Clustering approach. In Sec. 5 all GPU-based imple-
mentation details for proposed concepts are described. Sec-
tions 7 and 8 present results and some final conclusions.

2. Related Work

Variational mesh clustering: Proposed in [CSAD04] as an
extension to the Lloyd’s algorithm for the extraction of the
planar regions. Partitioning and fitting are two alternately
repeated steps to minimize the total energy. A notion of a
shape proxy Pi as a local representative of the cluster Ci
which best approximates a given geometry is introduced.
In the partitioning step a global priority queue is used to
assign triangle to clusters. In the fitting step a new proxy
set is recomputed. This is used for identification of the new
starting seeds and for performing the next partitioning step.
In [WK05], [YLW06] and [JKS05] the same approach was
used to fit other shapes such as spheres, cylinders, rolling-
balls, general quadric and for identifying quasi-developable
surfaces.

Hierarchical mesh clustering: Introduced in [GWH01]
for planar approximation of polygonal surface meshes and
later employed in [AFS06] for fitting planes, sphere and

cylinders. At the beginning a mesh dual graph is created. All
created dual edges (DEs) are sorted in a priority queue (PQ).
In each step a DE is popped from the PQ and collapsed. The
result of this process is a hierarchy of clusters.

Multilevel mesh clustering: Introduced in [CK08] to re-
solve the inherent problems of the above mentioned Varia-
tional and Hierarchical mesh clustering. This approach is a
mixture of both, i.e. in each step collapse a DE and subse-
quently apply an optimization step. The Energy Minimiza-
tion by Local Queries as a generalization of the algorithm
proposed in [VC04] is used for optimization. As a result a
complete mesh analysis can be performed and better qual-
ity results are obtained. However, high time complexity and
imposed requirements on the energy functional are the main
drawbacks for a more wider use of this framework.

GPU-based processing: One of the most prominent work
in GPU-based acceleration of the iterative (Variational) clus-
tering is the work of Hall and Hart [HH04]. Their work does
not address the algorithmical part of the problem instead
they propose to use the programmable graphics hardware to
perform the most computationally expensive part of the al-
gorithm. Thus they use the CPU for the fitting step, where
the GPU is used to perform all necessary point-to-cluster
distance metric evaluations. For performing only one par-
titioning step, for each cluster the model data is loaded in
a shader constant and used to compute the metric from all
points. Although a significant speed up can be achieved with
this implementation, for large number of clusters and parti-
tioning steps it does not appear to be so efficient.

It is worth to mention that there are completely GPU-
based frameworks such as in [SJP05] or [DT07], to name
some. Here we do not refer to these approaches because they
are proposed for other mesh processing tasks, rather than for
mesh clustering.

Parallel Data Clustering: In past there were many at-
tempts to design parallel algorithms for data clustering, for
an example and an overview see [Ols95]. In field of image
segmentation a parallel region growing paradigm [WLR88]
was introduced. The growing is performed by identifying all
possible merge partners and merging regions with mutual
choices. Although this idea is proposed in other context we
show in Sec. 4 how it can be used for a parallel multilevel
mesh clustering.

3. Boundary-based Mesh Clustering

Suppose that an energy functional E is provided:

E = 
i∈

E(Ci,Pi) = 
i∈


Fj∈Ci

E(Fj,Pi). (1)

with  ∈ {0, . . . ,k− 1}.

E(Ci,Pi) is the energy of the cluster Ci for a given proxy
Pi and E(Fj,Pi) is the positive semi-definite cost of assign-
ing the face Fj to the cluster Ci with corresponding proxy

c© The Eurographics Association 2009.

34

Chiosa et al. / Parallel Mesh Clustering

init grow 6 iter. 14 iter. 23 iter. 30 iter. 46 iter.

Figure 1: Boundary-based cluster optimization steps: (init grow) Initialization (black triangles are the starting seeds) and the
initial cluster grow. (6 iter.)-(46 iter.) Clustering results for corresponding number of iterations.

Pi. In the case of a precomputed set of input proxies Pi we
call the process of assigning the faces Fj to the clusters Ci

a proxy-based clustering as long as the cluster’s proxy is
not recomputed after each assigned face. In [CK08], a non
proxy-based clustering is performed as the cluster proxy is
reupdated after each assigned face.

Now suppose that a proxy-based mesh clustering, i.e. par-
titioning, is performed (see Fig. 1: init grow) and a new set
of proxies Pnew

i is fitted. The variational clustering frame-
work [CSAD04] will continue with an identification of the
initial seeds for the next partitioning phase. For each clus-
ter Ci this is done by going once through all its faces Fj and
identifying the one with the smallest energy E(Fj,P

new
i) and

as close as possible to the cluster center. These seeds are then
used to perform a new clustering from scratch.

In practice, one can easily observe that the cluster config-
uration changes very rapidly during the first iterations and
then starts to settle slowly. Secondly, the cluster configura-
tion is mostly affected on the boundary only whereas the
cluster’s “interior” remains usually intact or changes very
slowly (see Fig. 1). Thus, we state that in the process of
cluster optimization, regrowing of these “interior” regions
(as done in the variational clustering framework) is, in gen-
eral, not necessary. Regrowing only these boundary bands
(strips) will therefore be sufficient to optimize the cluster
configurations.

3.1. Algorithm Overview

Based on the observations just mentioned we propose a new
Boundary-based clustering approach which can be summa-
rized in the following three steps:

Initialization: For a given number k of clusters, identify
and assign a starting seed for each cluster (Fig. 1: init
grow). Usually a random initialization is used.

Initial Cluster Grow: Loop over the boundary loop (BL)
[CK08] of the cluster and grow the clusters until the entire
model is covered (Fig. 1: init grow).

Optimization: Minimize the total energy of the obtained
configurations by applying the Boundary-based Cluster
Optimization algorithm (see Sec. 3.2) until convergence
or until a specified number of iterations is reached (see
Fig. 1 for a various number of iterations).

The initial cluster grow is done by iteratively assigning
the free (not assigned to any cluster) neighboring face of the
cluster’s boundary edge. Generally, this process is very fast
because no energy computation is involved.

3.2. Boundary-based Cluster Optimization

Suppose that an initial clustering configuration (see Fig. 1:
init grow) for k clusters Ci with proxies Pi and with corre-
sponding energy E = i E(Ci,Pi) is given. The basic idea
of the algorithm is that the total energy E can be minimized
by simply reassigning the cluster’s boundary faces to other
clusters in such a way that the total energy E decreases.

A simple example of this process for two clusters C1 and
C2 with proxies P1 and P2 and two neighboring faces Fm and
Fn of a boundary edge e is presented in Fig. 2. The energies
E0, E1 and E2 can be computed as follows:

E0 = 
Fj∈C1\{Fm}

E(Fj,P1)+E(Fm,P1) +


Fj∈C2\{Fn}

E(Fj,P2)+E(Fn,P2).

E1 = 
Fj∈C1\{Fm}

E(Fj,P1)+E(Fm,P1)+E(Fn,P1) +


Fj∈C2\{Fn}

E(Fj,P2).

E2 = 
Fj∈C1\{Fm}

E(Fj,P1) +


Fj∈C2\{Fn}

E(Fj,P2)+E(Fm,P2)+E(Fn,P2)

(2)

For comparing the energies E0, E1 and E2 in the above
formulas, the sums are irrelevant, thus Eq. 2 can be simpli-
fied to:

D0 = E(Fm,P1)+E(Fn,P2).

D1 = E(Fm,P1)+E(Fn,P1).

D2 = E(Fm,P2)+E(Fn,P2).

(3)

For a given boundary edge e the smallest energy D is
chosen and a corresponding configuration is updated, i.e.

c© The Eurographics Association 2009.

35

Chiosa et al. / Parallel Mesh Clustering

cluster grow or shrink or no configuration changes, as done
in [CK08], [VC04].

Fm

Fn

C1 C2 C2

Fm

Fn

C1 C2

Fm

Fn

C1

(a) (b) (c)

Figure 2: (a)-(c) Local tests performed for a given bound-
ary edge e (solid line) of two adjacent clusters C1 and C2.
(a) Initial case: configuration energy corresponds to E0. (b)
C1 Grows: configuration energy corresponds to E1. (c) C1
Shrinks: configuration energy corresponds to E2.

Observe that the definition and the computation of D0, D1

and D2 is quite different from that specified in [CK08], al-
though it has the same locality-based check paradigm. This
provides the base for performing these checks in parallel.
Additionally there is no such strong limitation on the energy
functional as in [CK08] where a special energy represen-
tation (not easily obtained for most of the existing energy
functionals) is required in order to compute efficiently D0,
D1 and D2. With this algorithm any energy functional which
obey the proxy-based paradigm can be used, thus allowing
for a larger set of energy functionals.

When the optimization has finished, a new set of proxies
Pnew

i can be computed and used to perform a new parallel
boundary-based energy minimization. Because the energy E
is supposed to be positive semi-defined and any boundary
modification lowers the energy, the algorithm should con-
verge in general, i.e. for a given set of proxies there are no
boundary faces that can be reassigned to other clusters so
that the energy decreases.

Although not observed in practice, the algorithm may in
some cases (due to precision problem or nonconvexity of the
energy) not converge. In these cases a predefined maximal
number of iterations can be used.

Observe that in comparison to the classical variational ap-
proach [CSAD04] in this approach there is no identification
of the starting seeds. Additionally, there is no local or global
priority queue to decide on which face must be assigned to
which cluster in the clustering process. This on the one hand
leads to a lower computational cost and on the other supports
a GPU-based implementation (see Sec. 5.3).

4. Parallel Multilevel (ML) Mesh Clustering

In the multilevel mesh clustering approach in each step a sin-
gle Optimal Dual Edge (ODE) is identified and collapsed,
that followed by a cluster optimization. The algorithm de-
scribed in Sec. 3.2 can be used without modification for op-
timization phase, thus allowing fast parallel cluster optimiza-
tion. However, for the hierarchical part of the ML construc-

tion only a parallel identification of an ODE could speed up
the algorithm (see Sec. 5.4 for details).

In [CK08] as a variation of the ML mesh clustering al-
gorithm it was shown that, for a specific region of interest,
sequentially merging p% of the clusters can lead to the same
quality of the results as obtained when using the standard
ML algorithm (only one ODE collapse in each step). Based
on this result, we propose to not restrict the ODE collapse
to only one collapse in each step but to perform as much
as possible in parallel, i.e. a Parallel multilevel (PML) mesh
clustering.

Thus, the algorithm for a parallel multilevel mesh cluster-
ing can be summarized as follows:

Loop until # of clusters equals 1
1. Forall clusters compute ODEs
2. Collapse mutual ODEs in parallel.
3. Apply optimization.

In the second step all clusters with mutual ODEs (both
ODEs connect the same clusters) are merged. Because these
merges are independent from each other they can be done in
parallel (see Sec. 5.4).

It should be pointed out that, as in [CK08], the algorithm
is flexible. It has no limitation on the way in which PML
clustering is performed. For some clustering problems one
could use the PML with optimization deactivated, i.e. per-
form parallel hierarchical clustering, or perform p% of ODE
collapses with PML clustering and then continue with con-
secutive ODE collapses for the remaining steps (see Sec. 7
for an example).

5. Technical details

In this section we describe implementation details for
Boundary-based and Parallel Multilevel mesh clustering us-
ing GPU-specific techniques. Both proposed frameworks are
generic, thus we neglect any energy functional related de-
tails. We aim at performing the complete clustering frame-
work entirely on GPU and at reducing as much data transfer
between CPU and GPU as possible.

Remark: Our implementation is OpenGL-based mainly
due to the fact that we could easily integrate and imple-
ment these algorithms in our already existing frameworks.
Although a CUDA-based implementation could provide a
more structured implementation, our general expectation is
that this will not provide substantial performance gains.

5.1. Mesh Representation on GPU

The algorithms presented in Sec. 3 and Sec. 4 are based on
local cluster boundary queries. For performing this kind of
queries a halfedge data structure [Män88] for mesh represen-
tation is required. To our knowledge, for this data structure,
there is currently no representation on GPU.

c© The Eurographics Association 2009.

36

Chiosa et al. / Parallel Mesh Clustering

79 8 9

7

0 2

14

10

−1

15

−1 −1
1 −1

6
2 −1 −1 −1

−1 −1
10
−1 −1 −1

−1
7

12
−1 8

−1 3
13
−110 −1

11
5 −1 −1

−1
−1 13 −1

14
9

12
−1
−1

15
13 −1

−1 11

4

F2 F4

F5

F8 F10

F0

F6

F12 F13

F14

F9

F3F1

F7

F15

F11

3 1 8

35 4 1 6

0 −1 −1

11

−1−1−1

−1 −1 −1

−1−1−1−1

6

−1 0 −1 −1

11

6−1−1

−1 −1 11

11−1−1−1

6

0

6

−1

11

0

11−1

6 11 11

1111−16

6

0 0 0 0

6

11

1111

6 11 11

111166

6

0 0 0 0

6

11

1111

6 11 11

11666

6

0 0 0 0

6

11

1111

6 6 11

11666

6

0 0

(a) (b) (c) (d) (e) (f) (g)

Figure 3: An example of a Boundary-based cluster optimization steps. (a)Top: The mesh with corresponding IDs for faces.
Bottom: The RGBA FaceInfo texture where each texel contains the (IDcl, IDn1, IDn2, IDn3) for each face. (b)-(e) Initial cluster
grow. (f)-(g) Boundary-based optimization. (b)-(g) Bottom: Shows how the face’s IDcl changes in FaceInfo texture

In its simplest form a mesh can be represented (recon-
structed) by specifying the coordinates of the vertices to-
gether with a set of indices for faces. In general, without
rebuilding the entire mesh there is no possibility to obtain
any neighboring information for a face, if required.

Our solution to this problem is to save additionally to the
vertex coordinates and indices for faces, the corresponding
neighbors for each face (see Fig. 3(a)). For a triangular mesh
each face has exactly three neighbors, thus these indices can
be simply saved in a RGB channel. Using this representation
one can compute for each face any required information, e.g.
centroid or normal or curvature. It is also sufficient for per-
forming all necessary clustering operations.

Moreover, due to the simplicity of the representation and
because we mostly use textures to save any data in GPU
memory, we save the input mesh in an image based pfs for-
mat (see [MKMS07]). Three RGB frames are used to save
correspondingly the vertex coordinates, vertex indices and
face neighbors IDs. In GPU memory these frames are also
loaded in three corresponding textures.

5.2. Processing Concepts and Data Structure

On GPU any entity, e.g. a vertex or a fragment, is processed
in parallel and independently from each other. A mesh clus-
tering on GPU must obey the same processing concept. A
decision on whether a face must be assigned or reassigned
to a different cluster must be taken independently and in an
arbitrary order from any decision made for its neighbors, the
same is also true for cluster merging decisions. Thus a per-
face and correspondingly per-cluster processing is applied.

Regardless of whether the mesh is clustered or not, each
face belongs to a specific cluster with index IDcl . At the
beginning each face belongs to a “null” cluster, i.e. it has
IDcl = −1. We save this information together with face
neighboring information (IDn1, IDn2, IDn3) in a RGBA tex-
ture FaceInfo (see Fig. 3(a)). Here each texel corresponds to
a face in the original mesh. Reassigning a face from cluster

m, i.e face has IDcl = m, to cluster n means that the face will
have IDcl = n (see Fig. 3).

For multilevel clustering (Sec. 4) the starting number
of clusters k is identical to the number of faces f . In
the case of boundary-based clustering (Sec. 3) k is user
specified and k ≤ f (usually k � f). Despite this we al-
ways assume kmax = f and use a corresponding texture
size, i.e. the same size as for face textures. This simpli-
fies all cluster data fetches, e.g. for a cluster with index
r the data is located in a texture with size texSize at the
position (mod(r, texSize), f loor(r/texSize)). For a Cluster-
defined texture a texel then refers to an individual cluster
data.

Additionally, depending on the applied energy functional
the data necessary for energy computation is saved in asso-
ciated FaceData and ClusterData textures.

5.3. Boundary-based Mesh Clustering on GPU

For a user specified number k of clusters, the steps of the
algorithm presented in Sec. 3 are implemented as follows:

Initialization: Randomly generate or load from a file the
IDs for starting faces. Reset the corresponding IDcl for start-
ing faces in the FaceInfo texture (see Fig. 3(b)).

Initial Cluster Grow: A face with ID∗
cl is a cluster

boundary face if at least one of its neighbors has IDcl �=
ID∗

cl . A cluster can grow only through its boundary faces.
Regarded from the actual boundary of the cluster, there are
two types of boundary faces : interior IDcl >−1 and exterior
IDcl = −1. Only exterior boundary faces must be added to a
specific cluster when growing. In the case when an exterior
boundary face can be added to more than one cluster we as-
sign the face to a cluster with smallest ID (see Fig. 3(b)-(e)).
An initial clustering is finished if there are no exterior bound-
ary faces that can be further added. An occlusion query can
be used in this case to check if any fragment has been writ-
ten, i.e. if the face IDcl changed or not.

c© The Eurographics Association 2009.

37

Chiosa et al. / Parallel Mesh Clustering

Cluster Optimization: The algorithm proposed in Sec.
3.2 is used in this case. The complete process can be sum-
marized as follows:

Loop until samples ! = 0
GatherClusterData()
ComputeClusterProxy()
samples = OptimizeBoundaryEnergy()

To perform a Boundary-based cluster optimization the
cluster proxies are required. To compute these, all cluster
necessary data is gathered (GatherClusterData()) in Clus-
terData. Using the information saved in the FaceInfo tex-
ture, which actually describes a given clustering, one can use
a vertex scattering process with additive blending activated
to collect the cluster’s data. Using ClusterData the cluster’s
proxy can be computed (ComputeClusterProxy()) and the in-
formation is saved in ClusterProxy texture.

By rasterizing the FaceInfo texture, fragments which cor-
respond to an individual face can be generated . Using data
from ClusterProxy and FaceData the D0, D1 and D2 ener-
gies (Eq.(3)) can be computed for fragments which corre-
spond to a boundary face. The non boundary correspond-
ing fragments are simply discarded. Remember that as in the
case of initial cluster grow the cluster can change its config-
uration only through boundary faces, i.e interior boundary
faces in this case.

The case with the smallest energy must be chosen and
the configuration correspondingly updated. Thus if D0 is the
smallest energy the fragment is simply discarded, if D2 is the
smallest, i.e. cluster shrinks, then the fragment IDcl is set to
the ID of the opposite cluster. However, if D1 is the smallest
energy, i.e. cluster must grow, the fragment is also discarded
because the IDcl for the neighboring face can not be reseted
from this point in the program. This limitation has no in-
fluence on the optimization because any cluster grow can be
seen as a shrink of the opposite cluster, i.e. any required clus-
ter grow will be performed by shrinking the opposite cluster.

After all fragments are processed, a new clustering config-
uration is obtained. That is used as a starting configuration
to complete a new optimization step, i.e. gather cluster data,
compute cluster proxies and apply a boundary optimization.
This process is repeated until there is no change in the clus-
ters configuration, i.e. no fragment changed its IDcl . An oc-
clusion query is used in this case to check how many frag-
ments (sample) were written. For an example see Fig. 3(f)-
(g) and Fig. 1.

Observe that the bigger the clusters the more fragments
corresponding to interior (non boundary) cluster faces are
discarded. Thus, this cluster Boundary-based optimization
process is very fast (see timing in Table 1).

depth

E3program

program
vertex

vertex

FaceInfo

depth

dual edges
dual edges

F1
F0

F2
F3

F4
F5F6

F7

F0
F2

F3

F4
F5F6

F7F7

1

ID5

2

F1

ID1 ID5

F6

E6

E3E7
ID1 ID5ID5

TF

& mask
depth test

ID5

depth test & max−blend

F1 F2 F3
F4 F5
F0

E6

E7 E3

(a) (b)

Figure 4: Parallel multilevel mesh clustering steps example.
(a)-(b): A mesh consisting of 8 faces and clustered in 4 clus-
ters. Arrows indicates the DEs. See how applying the second
pass the case (b) with two mutual DEs is obtained instead of
the case (a).

5.4. Parallel Multilevel Mesh Clustering on GPU

As a starting configuration for the multilevel (ML) approach,
each face is considered as an individual cluster. For a given
clustering configuration the algorithm starts with the identi-
fication of the optimal dual edges (ODEs), that followed by
the collapse operations.

For performing the standard (only one ODE collapse in
each step) ML clustering algorithm, only one ODE with the
smallest merging energy is required. A work flow of this pro-
cess can be seen in Fig. 4. The FaceInfo texture is loaded
into a vertex stream. The vertex program (1) discards all ver-
tices corresponding to the non-boundary faces. For vertices
which pass this test, i.e. for each boundary face, a DE is com-
puted. A DE contains the information on collapse cost and
the IDs of the two merging clusters. Scattering all generated
DEs into only one pixel (not shown in Fig. 4) and using as a
fragment depth the DE cost, one can identify the ODE with
minimal cost, by performing a depth test.

For performing the parallel ML clustering all mutual DE
must be identified. The work flow in this case is identical
to the above mentioned ML clustering with only difference.
Now the DEs are not scattered into only one pixel but to dif-
ferent pixels which correspond to the face’s current cluster
ID. However, there can be cases where no mutual ODEs exist
although there are possibilities for merging see Fig. 4(a) for
an example. This mostly happens in the regions with identi-
cal merging energy, because here the direction of the merge
is arbitrary. The same problem was pointed out indirectly
in [WLR88], they proposed to select the neighbor with the
largest ID.

To have this selection implemented efficiently we propose

c© The Eurographics Association 2009.

38

Chiosa et al. / Parallel Mesh Clustering

(a) (b) (c) (d)

Figure 5: A CVD construction for 15 clusters. (a) & (c) Results of the initialization. (b)&(d) Results after applying Boundary-
based mesh clustering

to use the transform feedback (TF) feature of the GPU to
read back all generated DEs (see the sketch in Fig. 4) without
recomputing them. These DEs can be scattered (vertex pro-
gram (2)) to the correct cluster position. However to choose
a neighbor with the largest ID, we additionally apply a max-
imum blending to the ODE’s cluster ID. This way, at least
one pair of mutual DEs can be obtained (see Fig. 4).

6. Energy Functional

We already mentioned the generic nature, i.e. the indepen-
dence on energy functionals used, of the algorithms pre-
sented in Sec. 3 and Sec. 4. To give an example we show how
an approximated Centroidal Voronoi Diagram (CVD) can be
performed. This energy is chosen mostly due to the fact that
it can be easily implemented and that it requires few cluster
data. In our future work we plan to test this framework with
other commonly employed energy functionals.

The energy of the approximated CVD can be written as:

ECVD =
k−1


i=0

Ei =
k−1


i=0


Fj∈Ci

 j‖ j −Pi‖2. (4)

where  j and  j is the centroid and the weighted area of
the face Fj, respectively. Pi = Fj∈Ci

 j j/Fj∈Ci
 j is the

cluster centroid (proxy). Thus for computing the D0, D1 and
D2 energies (Eq. 3) one uses: E(Fs,Pr) = s‖s −Pr‖2

The dual edge collapse cost between two cluster C1 and
C2 is computed as in [CK08] using: DEcost = E12−E1−E2.
For an easier computation of the merging energy, Eq. 4 can
be written in a form:

Ei =
j
 j‖ j‖2 − 2Pi · (

j
 j j)+‖Pi‖2

j
 j. (5)

Thus in the FaceData texture we only need to keep the
values  j‖ j‖2,  j j and  j . Correspondingly the Cluster-

Data texture stores the following information:  j  j‖ j‖2,
 j  j j and  j  j.

7. Results and Discussion

The results presented in this paper are generated using a
3GHz Intel Core(TM)2 Duo CPU PC with a GeForce GTX
280 graphics card.

In Fig. 5 the result of a CVD construction is presented.
Observe how during optimization the clusters (the green
cluster is the most prominent) moved from the left leg of the
model to different positions on the model. This shows that
the algorithm performs very well even when starting with
a “bad” initialization. At the same time observe the perfect
symmetry (good visual quality) in the final clustering.

Table 1 provides a timing comparison between CPU- and
GPU-based clustering results for different meshes. We com-
pare the standard approximative CVD algorithm [VC04]
with our GPU boundary-based approach. Here speedups
from 10 to 18 are observed.

Model # # CPU GPU
Faces Clusters ACVD (sec.) BB (ms)

Bunny 70k 1k 3 172
Bunny 70k 3k 3 187
Horse 97k 1k 3 187
Horse 97k 2k 4 218

Armadillo 346k 2k 12 1140
Armadillo 346k 5k 16 891

Table 1: Clustering time for building an Approximated CVD
(ACVD) with CPU- vs. GPU Boundary-based (BB) cluster
optimization

Table 2 also provides a timing comparison between CPU-
and GPU-based clustering results for ML approach. Due the
fact that only one dual edge is collapsed in each step for the
GPU ML clustering a speedup of a factor 1.5 to 2.5 is only
achieved. Using the GPU parallel ML speedup factors of 32
to 150 can be achieved.

c© The Eurographics Association 2009.

39

Chiosa et al. / Parallel Mesh Clustering

Model CPU, ML GPU, ML GPU, PML
(sec.) (sec.) (sec.)

Bunny 281 183 9
Horse 710 283 5

Armadillo 10856 6633 73

Table 2: Clustering time for Multilevel (ML) and Parallel
Multilevel (PML) mesh clustering. The results are given us-
ing a CPU and respectively a GPU based implementation

Figure 6 shows the CVD energy (Eq. 4) behavior for dif-
ferent number of clusters between 2k to 1k for different al-
gorithms. Observe that using the boundary-based approach
slightly higher energy is obtained comparatively to the ap-
proximated CVD algorithm [VC04]. At the same time the
energy for GPU ML clustering is similar to the energy of
the approximated CVD algorithm. Similar behavior was ob-
served for most of the tested models, although for some
models and specific number of clusters, e.g. a cube model
with 8 clusters, the results are identical.

Figure 6 also exemplifies a variation of the parallel ML
and ML algorithm. Here the PML approach was applied up
to 1633 cluster, followed by the ML clustering. Observe that
the clustering energy from 1200 clusters is identical to that
of the ML clustering. Thus for a specific region of interest
this variation of the algorithm can be used to perform a fast
ML construction.

 25

 30

 35

 40

 45

 50

 55

 60

 1000 1200 1400 1600 1800 2000

E
ne

rg
y

E
 C

V
D

clusters

GPU HR
CPU HR
GPU ML
CPU ML

GPU PML
GPU PML/1633 ML

GPU BB
CPU ACVD

Figure 6: CVD energy versus number of clusters for Bunny
model. (HR) Hierarchical, (ML) Multilevel, (PML) Paral-
lel ML, (BB) Boundary-based, (ACVD) Approximated CVD
mesh clustering [VC04]. (PML/1633 ML) Performing PML
up to 1633 clusters, then applying ML clustering.

8. Conclusion and Future Work

We propose a new generic mesh clustering framework,
which obeys a parallel clustering concept suitable for GPU-
based mesh processing. Using this framework we show that

considerable speedup can be obtained. The proposed paral-
lel multilevel mesh clustering approach is very flexible. It
has no limitation on the way in which parallel ML clustering
can be performed.

As an example we showed how an approximated CVD
can be obtained. In future we plan to implement more from
existing energy functionals, e.g. to fit planes, spheres and
cylinders, as done in [CSAD04], [WK05]. We also think that
there are ways for redefining this approach for general data
clustering propose.

References

[AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hi-
erarchical mesh segmentation based on fitting primitives. Vis.
Comput. 22, 3 (2006), 181–193.

[CK08] CHIOSA I., KOLB A.: Variational multilevel mesh clus-
tering. In Proc. IEEE Int. Conf. on Shape Modeling and Appli-
cations (SMI) (2008), pp. 197–204.

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.:
Variational shape approximation. In Proc. SIGGRAPH (2004),
ACM Press, pp. 905–914.

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the GPU. In I3D ’07: Proc. of the 2007 Symp. on
Interactive 3D graphics and games (2007), ACM, pp. 161–166.

[GWH01] GARLAND M., WILLMOTT A., HECKBERT P. S.: Hi-
erarchical face clustering on polygonal surfaces. In Proc. Symp.
on Interactive 3D graphics (I3D) (2001), ACM Press, pp. 49–58.

[HH04] HALL J. D., HART J. C.: GPU acceleration of itera-
tive clustering. In Manuscript accompanying poster at GP2. The
ACM Workshop on General Purpose Comp. on Graph. Proces-
sors, and SIGGRAPH 2004 poster (2004).

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-charts:
Quasi-developable mesh segmentation. Proc. EUROGRAPHICS
24, 3 (2005), 581–590.

[Män88] MÄNTYLÄ M.: An Introduction to Solid Modeling.
Computer Science Press, 1988.

[MKMS07] MANTIUK R., KRAWCZYK G., MANTIUK R., SEI-
DEL H.-P.: High dynamic range imaging pipeline: Perception-
motivated representation of visual content. In Human Vision and
Electronic Imaging XII (2007), vol. 6492, SPIE, p. 649212.

[Ols95] OLSON C. F.: Parallel algorithms for hierarchical clus-
tering. Parallel Comput. 21, 8 (1995), 1313–1325.

[SJP05] SHIUE L.-J., JONES I., PETERS J.: A realtime GPU
subdivision kernel. In ACM SIGGRAPH (2005), ACM, pp. 1010–
1015.

[VC04] VALETTE S., CHASSERY J.-M.: Approximated cen-
troidal voronoi diagram for uniform polygonal mesh coarsening.
EUROGRAPHICS 23, 3 (2004), 381–389.

[WK05] WU J., KOBBELT L.: Structure recovery via hybrid vari-
ational surface approximation. In Proc. Eurographics (2005),
vol. 24, pp. 277–284.

[WLR88] WILLEBEEK-LEMAIR M., REEVES A. P.: Region
growing on a hypercube multiprocessor. In Proc. of the third conf.
on Hypercube concurrent computers and applications (1988),
ACM, pp. 1033–1042.

[YLW06] YAN D.-M., LIU Y., WANG W.: Quadric surface ex-
traction by variational shape approximation. In Geometric Mod-
eling and Processing - GMP (Lecture Notes in Computer Sci-
ence) (2006), vol. 4077/2006, pp. 73–86.

c© The Eurographics Association 2009.

40

