SGP14: Eurographics Symposium on Geometry Processing (CGF 33-5)

Permanent URI for this collection


Preface and Table of Contents


Designing N-PolyVector Fields with Complex Polynomials

Diamanti, Olga
Vaxman, Amir
Panozzo, Daniele
Sorkine-Hornung, Olga

Efficient Encoding of Texture Coordinates Guided by Mesh Geometry

Vása, Libor
Brunnett, Guido

Discrete 2-Tensor Fields on Triangulations

Goes, Fernando de
Liu, Beibei
Budninskiy, Max
Tong, Yiying
Desbrun, Mathieu

Compressed Manifold Modes for Mesh Processing

Neumann, Thomas
Varanasi, Kiran
Theobalt, Christian
Magnor, Marcus
Wacker, Markus

Feature-Preserving Surface Completion Using Four Points

Harary, Gur
Tal, Ayellet
Grinspun, Eitan

3D Motion Completion in Crowded Scenes

Gafni, Niv
Sharf, Andrei

Real-time Bas-Relief Generation from Depth-and-Normal Maps on GPU

Ji, Zhongping
Sun, Xianfang
Li, Shi
Wang, Yigang

Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization

Boulch, Alexandre
Gorce, Martin de La
Marlet, Renaud

3D Shape Segmentation and Labeling via Extreme Learning Machine

Xie, Zhige
Xu, Kai
Liu, Ligang
Xiong, Yueshan

Robust Region Detection via Consensus Segmentation of Deformable Shapes

Rodolà, Emanuele
Bulò, Samuel Rota
Cremers, Daniel

Clever Support: Efficient Support Structure Generation for Digital Fabrication

Vanek, Juraj
Galicia, Jorge A. G.
Benes, Bedrich

Transductive 3D Shape Segmentation using Sparse Reconstruction

Xu, Weiwei
Shi, Zhouxu
Xu, Mingliang
Zhou, Kun
Wang, Jingdong
Zhou, Bin
Wang, Jinrong
Yuan, Zhenming

An Efficient Approach to Correspondences between Multiple Non-Rigid Parts

Tam, Gary K. L.
Martin, Ralph R.
Rosin, Paul L.
Lai, Yu-Kun

Supervised Learning of Bag-of-features Shape Descriptors Using Sparse Coding

Litman, Roee
Bronstein, Alex
Bronstein, Michael
Castellani, Umberto

Learnt Real-time Meshless Simulation

Sidorov, Kirill A.
Marshall, A. David

What Makes London Work Like London?

AlHalawani, Sawsan
Yang, Yong-Liang
Wonka, Peter
Mitra, Niloy J.

Blue-Noise Remeshing with Farthest Point Optimization

Yan, Dong-Ming
Guo, Jianwei
Jia, Xiaohong
Zhang, Xiaopeng
Wonka, Peter

Pattern-Based Quadrangulation for N-Sided Patches

Takayama, Kenshi
Panozzo, Daniele
Sorkine-Hornung, Olga

Freeform Honeycomb Structures

Jiang, Caigui
Wang, Jun
Wallner, Johannes
Pottmann, Helmut

A Variational Taxonomy for Surface Reconstruction from Oriented Points

Schroers, Christopher
Setzer, Simon
Weickert, Joachim

SUPER 4PCS: Fast Global Pointcloud Registration via Smart Indexing

Mellado, Nicolas
Aiger, Dror
Mitra, Niloy J.

Semi-sharp Creases on Subdivision Curves and Surfaces

Kosinka, Jiri
Sabin, Malcolm A.
Dodgson, Neil A.

Pseudo-Spline Subdivision Surfaces

Deng, Chongyang
Hormann, Kai

Functional Fluids on Surfaces

Azencot, Omri
Weißmann, Steffen
Ovsjanikov, Maks
Wardetzky, Max
Ben-Chen, Mirela

Exploring the Geometry of the Space of Shells

Heeren, Behrend
Rumpf, Martin
Schröder, Peter
Wardetzky, Max
Wirth, Benedikt

As-Conformal-As-Possible Surface Registration

Yoshiyasu, Yusuke
Ma, Wan-Chun
Yoshida, Eiichi
Kanehiro, Fumio

Remeshing-assisted Optimization for Locally Injective Mappings

Jin, Yao
Huang, Jin
Tong, Ruofeng

Cross-Collection Map Inference by Intrinsic Alignment of Shape Spaces

Shapira, Nitzan
Ben-Chen, Mirela


Browse

Recent Submissions

Now showing 1 - 29 of 29
  • Item
    Preface and Table of Contents
    (The Eurographics Association and Blackwell Publishing Ltd., 2014) Thomas Funkhouser and Shi-Min Hu
  • Item
    Designing N-PolyVector Fields with Complex Polynomials
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Diamanti, Olga; Vaxman, Amir; Panozzo, Daniele; Sorkine-Hornung, Olga; Thomas Funkhouser and Shi-Min Hu
    We introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily orthogonal nor rotationally symmetric. We formally define a novel representation for N-PolyVectors as the root sets of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral meshes.
  • Item
    Efficient Encoding of Texture Coordinates Guided by Mesh Geometry
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Vása, Libor; Brunnett, Guido; Thomas Funkhouser and Shi-Min Hu
    In this paper, we investigate the possibilities of efficient encoding of UV coordinates associated with vertices of a triangle mesh. Since most parametrization schemes attempt to achieve at least some level of conformality, we exploit the similarity of the shapes of triangles in the mesh and in the parametrization. We propose two approaches building on this idea: first, applying a recently proposed generalization of the parallelogram predictor, using the inner angles of mesh triangles corresponding to the UV-space triangles. Second, we propose an encoding method based on discrete Laplace operator, which also allows exploiting the information contained in the mesh geometry to efficiently encode the parametrization. Our experiments show that the proposed approach leads to savings of up to 3 bits per UV vertex, without loss of precision.
  • Item
    Discrete 2-Tensor Fields on Triangulations
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Goes, Fernando de; Liu, Beibei; Budninskiy, Max; Tong, Yiying; Desbrun, Mathieu; Thomas Funkhouser and Shi-Min Hu
    Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and traceless tensors-thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces
  • Item
    Compressed Manifold Modes for Mesh Processing
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Neumann, Thomas; Varanasi, Kiran; Theobalt, Christian; Magnor, Marcus; Wacker, Markus; Thomas Funkhouser and Shi-Min Hu
    This paper introduces compressed eigenfunctions of the Laplace-Beltrami operator on 3D manifold surfaces. They constitute a novel functional basis, called the compressed manifold basis, where each function has local support. We derive an algorithm, based on the alternating direction method of multipliers (ADMM), to compute this basis on a given triangulated mesh. We show that compressed manifold modes identify key shape features, yielding an intuitive understanding of the basis for a human observer, where a shape can be processed as a collection of parts. We evaluate compressed manifold modes for potential applications in shape matching and mesh abstraction. Our results show that this basis has distinct advantages over existing alternatives, indicating high potential for a wide range of use-cases in mesh processing.
  • Item
    Feature-Preserving Surface Completion Using Four Points
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Harary, Gur; Tal, Ayellet; Grinspun, Eitan; Thomas Funkhouser and Shi-Min Hu
    We present a user-guided, semi-automatic approach to completing large holes in a mesh. The reconstruction of the missing features in such holes is usually ambiguous. Thus, unsupervised methods may produce unsatisfactory results. To overcome this problem, we let the user indicate constraints by providing merely four points per important feature curve on the mesh. Our algorithm regards this input as an indication of an important broken feature curve. Our completion is formulated as a global energy minimization problem, with user-defined spatialcoherence constraints, allows for completion that adheres to the existing features. We demonstrate the method on example problems that are not handled satisfactorily by fully automatic methods.
  • Item
    3D Motion Completion in Crowded Scenes
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Gafni, Niv; Sharf, Andrei; Thomas Funkhouser and Shi-Min Hu
    Crowded motions refer to multiple objects moving around and interacting such as crowds, pedestrians and etc. We capture crowded scenes using a depth scanner at video frame rates. Thus, our input is a set of depth frames which sample the scene over time. Processing such data is challenging as it is highly unorganized, with large spatiotemporal holes due to many occlusions. As no correspondence is given, locally tracking 3D points across frames is hard due to noise and missing regions. Furthermore global segmentation and motion completion in presence of large occlusions is ambiguous and hard to predict. Our algorithm utilizes Gestalt principles of common fate and good continuity to compute motion tracking and completion respectively. Our technique does not assume any pregiven markers or motion template priors. Our key-idea is to reduce the motion completion problem to a 1D curve fitting and matching problem which can be solved efficiently using a global optimization scheme. We demonstrate our segmentation and completion method on a variety of synthetic and real world crowded scanned scenes.
  • Item
    Real-time Bas-Relief Generation from Depth-and-Normal Maps on GPU
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Ji, Zhongping; Sun, Xianfang; Li, Shi; Wang, Yigang; Thomas Funkhouser and Shi-Min Hu
    To design a bas-relief from a 3D scene is an inherently interactive task in many scenarios. The user normally needs to get instant feedback to select a proper viewpoint. However, current methods are too slow to facilitate this interaction. This paper proposes a two-scale bas-relief modeling method, which is computationally efficient and easy to produce different styles of bas-reliefs. The input 3D scene is first rendered into two textures, one recording the depth information and the other recording the normal information. The depth map is then compressed to produce a base surface with level-of-depth, and the normal map is used to extract local details with two different schemes. One scheme provides certain freedom to design bas-reliefs with different visual appearances, and the other provides a control over the level of detail. Finally, the local feature details are added into the base surface to produce the final result. Our approach allows for real-time computation due to its implementation on graphics hardware. Experiments with a wide range of 3D models and scenes show that our approach can effectively generate digital bas-reliefs in real time.
  • Item
    Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Boulch, Alexandre; Gorce, Martin de La; Marlet, Renaud; Thomas Funkhouser and Shi-Min Hu
    This paper presents a method for the 3D reconstruction of a piecewise-planar surface from range images, typically laser scans with millions of points. The reconstructed surface is a watertight polygonal mesh that conforms to observations at a given scale in the visible planar parts of the scene, and that is plausible in hidden parts. We formulate surface reconstruction as a discrete optimization problem based on detected and hypothesized planes. One of our major contributions, besides a treatment of data anisotropy and novel surface hypotheses, is a regularization of the reconstructed surface w.r.t. the length of edges and the number of corners. Compared to classical area-based regularization, it better captures surface complexity and is therefore better suited for man-made environments, such as buildings. To handle the underlying higher-order potentials, that are problematic for MRF optimizers, we formulate minimization as a sparse mixed-integer linear programming problem and obtain an approximate solution using a simple relaxation. Experiments show that it is fast and reaches near-optimal solutions.
  • Item
    3D Shape Segmentation and Labeling via Extreme Learning Machine
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Xie, Zhige; Xu, Kai; Liu, Ligang; Xiong, Yueshan; Thomas Funkhouser and Shi-Min Hu
    We propose a fast method for 3D shape segmentation and labeling via Extreme Learning Machine (ELM). Given a set of example shapes with labeled segmentation, we train an ELM classifier and use it to produce initial segmentation for test shapes. Based on the initial segmentation, we compute the final smooth segmentation through a graph-cut optimization constrained by the super-face boundaries obtained by over-segmentation and the active contours computed from ELM segmentation. Experimental results show that our method achieves comparable results against the state-of-the-arts, but reduces the training time by approximately two orders of magnitude, both for face-level and super-face-level, making it scale well for large datasets. Based on such notable improvement, we demonstrate the application of our method for fast online sequential learning for 3D shape segmentation at face level, as well as realtime sequential learning at super-face level.
  • Item
    Robust Region Detection via Consensus Segmentation of Deformable Shapes
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Rodolà, Emanuele; Bulò, Samuel Rota; Cremers, Daniel; Thomas Funkhouser and Shi-Min Hu
    We consider the problem of stable region detection and segmentation of deformable shapes. We pursue this goal by determining a consensus segmentation from a heterogeneous ensemble of putative segmentations, which are generated by a clustering process on an intrinsic embedding of the shape. The intuition is that the consensus segmentation, which relies on aggregate statistics gathered from the segmentations in the ensemble, can reveal components in the shape that are more stable to deformations than the single baseline segmentations. Compared to the existing approaches, our solution exhibits higher robustness and repeatability throughout a wide spectrum of non-rigid transformations. It is computationally efficient, naturally extendible to point clouds, and remains semantically stable even across different object classes. A quantitative evaluation on standard datasets confirms the potentiality of our method as a valid tool for deformable shape analysis.
  • Item
    Clever Support: Efficient Support Structure Generation for Digital Fabrication
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Vanek, Juraj; Galicia, Jorge A. G.; Benes, Bedrich; Thomas Funkhouser and Shi-Min Hu
    We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the object or the ground in order to print them. Since the support material needs to be printed first and discarded later, optimizing its volume can lead to material and printing time savings.We present a novel, geometry-based approach that minimizes the support material while providing sufficient support. Using our approach, the input 3D model is first oriented into a position with minimal area that requires support. Then the points in this area that require support are detected. For these points the supporting structure is progressively built while attempting to minimize the overall length of the support structure. The resulting structure has a tree-like shape that effectively supports the overhangs. We have tested our algorithm on the MakerBot R ReplicatorTM 2 printer and we compared our solution to the embedded software solution in this printer and to Autodesk R MeshmixerTMsoftware. Our solution reduced printing time by an average of 29.4% (ranging from 13.9% to 49.5%) and the amount of material by 40.5% (ranging from 24.5% to 68.1%).
  • Item
    Transductive 3D Shape Segmentation using Sparse Reconstruction
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Xu, Weiwei; Shi, Zhouxu; Xu, Mingliang; Zhou, Kun; Wang, Jingdong; Zhou, Bin; Wang, Jinrong; Yuan, Zhenming; Thomas Funkhouser and Shi-Min Hu
    We propose a transductive shape segmentation algorithm, which can transfer prior segmentation results in database to new shapes without explicitly specification of prior category information. Our method first partitions an input shape into a set of segmentations as a data preparation, and then a linear integer programming algorithm is used to select segments from them to form the final optimal segmentation. The key idea is to maximize the segment similarity between the segments in the input shape and the segments in database, where the segment similarity is computed through sparse reconstruction error. The segment-level similarity enables to handle a large amount of shapes with significant topology or shape variations with a small set of segmented example shapes. Experimental results show that our algorithm can generate high quality segmentation and semantic labeling results in the Princeton segmentation benchmark.
  • Item
    An Efficient Approach to Correspondences between Multiple Non-Rigid Parts
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Tam, Gary K. L.; Martin, Ralph R.; Rosin, Paul L.; Lai, Yu-Kun; Thomas Funkhouser and Shi-Min Hu
    Identifying multiple deformable parts on meshes and establishing dense correspondences between them are tasks of fundamental importance to computer graphics, with applications to e.g. geometric edit propagation and texture transfer. Much research has considered establishing correspondences between non-rigid surfaces, but little work can both identify similar multiple deformable parts and handle partial shape correspondences. This paper addresses two related problems, treating them as a whole: (i) identifying similar deformable parts on a mesh, related by a non-rigid transformation to a given query part, and (ii) establishing dense point correspondences automatically between such parts. We show that simple and efficient techniques can be developed if we make the assumption that these parts locally undergo isometric deformation. Our insight is that similar deformable parts are suggested by large clusters of point correspondences that are isometrically consistent. Once such parts are identified, dense point correspondences can be obtained by an iterative propagation process. Our techniques are applicable to models with arbitrary topology. Various examples demonstrate the effectiveness of our techniques.
  • Item
    Supervised Learning of Bag-of-features Shape Descriptors Using Sparse Coding
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Litman, Roee; Bronstein, Alex; Bronstein, Michael; Castellani, Umberto; Thomas Funkhouser and Shi-Min Hu
    We present a method for supervised learning of shape descriptors for shape retrieval applications. Many contentbased shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a 'geometric dictionary' using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process (pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning, where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi-level optimization using a taskspecific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks.
  • Item
    Learnt Real-time Meshless Simulation
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Sidorov, Kirill A.; Marshall, A. David; Thomas Funkhouser and Shi-Min Hu
    We present a new real-time approach to simulate deformable objects using a learnt statistical model to achieve a high degree of realism. Our approach improves upon state-of-the-art interactive shape-matching meshless simulation methods by not only capturing important nuances of an object's kinematics but also of its dynamic texture variation. We are able to achieve this in an automated pipeline from data capture to simulation. Our system allows for the capture of idiosyncratic characteristics of an object's dynamics which for many simulations (e.g. facial animation) is essential. We allow for the plausible simulation of mechanically complex objects without knowledge of their inner workings. The main idea of our approach is to use a flexible statistical model to achieve a geometrically-driven simulation that allows for arbitrarily complex yet easily learned deformations while at the same time preserving the desirable properties (stability, speed and memory efficiency) of current shape-matching simulation systems. The principal advantage of our approach is the ease with which a pseudo-mechanical model can be learned from 3D scanner data to yield realistic animation. We present examples of non-trivial biomechanical objects simulated on a desktop machine in real-time, demonstrating superior realism over current geometrically motivated simulation techniques.
  • Item
    What Makes London Work Like London?
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) AlHalawani, Sawsan; Yang, Yong-Liang; Wonka, Peter; Mitra, Niloy J.; Thomas Funkhouser and Shi-Min Hu
    Urban data ranging from images and laser scans to traffic flows are regularly analyzed and modeled leading to better scene understanding. Commonly used computational approaches focus on geometric descriptors, both for images and for laser scans. In contrast, in urban planning, a large body of work has qualitatively evaluated street networks to understand their effects on the functionality of cities, both for pedestrians and for cars. In this work, we analyze street networks, both their topology (i.e., connectivity) and their geometry (i.e., layout), in an attempt to understand which factors play dominant roles in determining the characteristic of cities. We propose a set of street network descriptors to capture the essence of city layouts and use them, in a supervised setting, to classify and categorize various cities across the world. We evaluate our method on a range of cities, of various styles, and demonstrate that while standard image-level descriptors perform poorly, the proposed network-level descriptors can distinguish between different cities reliably and with high accuracy.
  • Item
    Blue-Noise Remeshing with Farthest Point Optimization
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Yan, Dong-Ming; Guo, Jianwei; Jia, Xiaohong; Zhang, Xiaopeng; Wonka, Peter; Thomas Funkhouser and Shi-Min Hu
    In this paper, we present a novel method for surface sampling and remeshing with good blue-noise properties. Our approach is based on the farthest point optimization (FPO), a relaxation technique that generates high quality blue-noise point sets in 2D. We propose two important generalizations of the original FPO framework: adaptive sampling and sampling on surfaces. A simple and efficient algorithm for accelerating the FPO framework is also proposed. Experimental results show that the generalized FPO generates point sets with excellent blue-noise properties for adaptive and surface sampling. Furthermore, we demonstrate that our remeshing quality is superior to the current state-of-the-art approaches.
  • Item
    Pattern-Based Quadrangulation for N-Sided Patches
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Takayama, Kenshi; Panozzo, Daniele; Sorkine-Hornung, Olga; Thomas Funkhouser and Shi-Min Hu
    We propose an algorithm to quadrangulate an N-sided patch with prescribed numbers of edge subdivisions at its boundary. Our algorithm is guaranteed to succeed for arbitrary valid input, which is proved using a canonical simplification of the input and a small set of topological patterns that are sufficient for supporting all possible cases. Our algorithm produces solutions with minimal number of irregular vertices by default, but it also allows the user to choose other feasible solutions by solving a set of small integer linear programs. We demonstrate the effectiveness of our algorithm by integrating it into a sketch-based quad remeshing system. A reference C++ implementation of our algorithm is provided as a supplementary material.
  • Item
    Freeform Honeycomb Structures
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Jiang, Caigui; Wang, Jun; Wallner, Johannes; Pottmann, Helmut; Thomas Funkhouser and Shi-Min Hu
    Motivated by requirements of freeform architecture, and inspired by the geometry of hexagonal combs in beehives, this paper addresses torsion-free structures aligned with hexagonal meshes. Since repetitive geometry is a very important contribution to the reduction of production costs, we study in detail ''honeycomb structures'', which are defined as torsion-free structures where the walls of cells meet at 120 degrees. Interestingly, the Gauss-Bonnet theorem is useful in deriving information on the global distribution of node axes in such honeycombs. This paper discusses the computation and modeling of honeycomb structures as well as applications, e.g. for shading systems, or for quad meshing. We consider this paper as a contribution to the wider topic of freeform patterns, polyhedral or otherwise. Such patterns require new approaches on the technical level, e.g. in the treatment of smoothness, but they also extend our view of what constitutes aesthetic freeform geometry.
  • Item
    A Variational Taxonomy for Surface Reconstruction from Oriented Points
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Schroers, Christopher; Setzer, Simon; Weickert, Joachim; Thomas Funkhouser and Shi-Min Hu
    The problem of reconstructing a watertight surface from a finite set of oriented points has received much attention over the last decades. In this paper, we propose a general higher order framework for surface reconstruction. It is based on the idea that position and normal defined by each oriented point can be used to construct an implicit local description of the unknown surface. On the one hand, this allows us to systematically explain and relate several popular methods, for example implicit moving least squares, smooth signed distance surface reconstruction as well as (screened) Poisson surface reconstruction. On the other hand, it allows to derive and discuss a number of new approaches for reconstructing either the signed distance or the indicator function of the sought object. All of these approaches are able to achieve competitive results but one of them turns out to be especially promising. To improve reconstructions in difficult real world scenarios where point clouds have been estimated from colour images, we introduce a hull constraint that encourages the surface to stay within a given region. Our framework is implemented on the GPU using a recent cyclic scheme called Fast Jacobi, which combines low implementational effort with high efficiency.
  • Item
    SUPER 4PCS: Fast Global Pointcloud Registration via Smart Indexing
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Mellado, Nicolas; Aiger, Dror; Mitra, Niloy J.; Thomas Funkhouser and Shi-Min Hu
    Data acquisition in large-scale scenes regularly involves accumulating information across multiple scans. A common approach is to locally align scan pairs using Iterative Closest Point (ICP) algorithm (or its variants), but requires static scenes and small motion between scan pairs. This prevents accumulating data across multiple scan sessions and/or different acquisition modalities (e.g., stereo, depth scans). Alternatively, one can use a global registration algorithm allowing scans to be in arbitrary initial poses. The state-of-the-art global registration algorithm, 4PCS, however has a quadratic time complexity in the number of data points. This vastly limits its applicability to acquisition of large environments. We present SUPER 4PCS for global pointcloud registration that is optimal, i.e., runs in linear time (in the number of data points) and is also output sensitive in the complexity of the alignment problem based on the (unknown) overlap across scan pairs. Technically, we map the algorithm as an 'instance problem' and solve it efficiently using a smart indexing data organization. The algorithm is simple, memory-efficient, and fast. We demonstrate that SUPER 4PCS results in significant speedup over alternative approaches and allows unstructured efficient acquisition of scenes at scales previously not possible. Complete source code and datasets are available for research use at http://geometry.cs.ucl.ac.uk/projects/2014/super4PCS/.
  • Item
    Semi-sharp Creases on Subdivision Curves and Surfaces
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Kosinka, Jiri; Sabin, Malcolm A.; Dodgson, Neil A.; Thomas Funkhouser and Shi-Min Hu
    We explore a method for generalising Pixar semi-sharp creases from the univariate cubic case to arbitrary degree subdivision curves. Our approach is based on solving simple matrix equations. The resulting schemes allow for greater flexibility over existing methods, via control vectors. We demonstrate our results on several high-degree univariate examples and explore analogous methods for subdivision surfaces.
  • Item
    Pseudo-Spline Subdivision Surfaces
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Deng, Chongyang; Hormann, Kai; Thomas Funkhouser and Shi-Min Hu
    Pseudo-splines provide a rich family of subdivision schemes with a wide range of choices that meet various demands for balancing the approximation power, the length of the support, and the regularity of the limit functions. Special cases of pseudo-splines include uniform odd-degree B-splines and the interpolatory 2n-point subdivision schemes, and the other pseudo-splines fill the gap between these two families. In this paper we show how the refinement step of a pseudo-spline subdivision scheme can be implemented efficiently using repeated local operations, which require only the data in the direct neighbourhood of each vertex, and how to generalize this concept to quadrilateral meshes with arbitrary topology. The resulting pseudo-spline surfaces can be arbitrarily smooth in regular mesh regions and C1 at extraordinary vertices as our numerical analysis reveals.
  • Item
    Functional Fluids on Surfaces
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Azencot, Omri; Weißmann, Steffen; Ovsjanikov, Maks; Wardetzky, Max; Ben-Chen, Mirela; Thomas Funkhouser and Shi-Min Hu
    Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time-varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time-reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries.
  • Item
    Exploring the Geometry of the Space of Shells
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Heeren, Behrend; Rumpf, Martin; Schröder, Peter; Wardetzky, Max; Wirth, Benedikt; Thomas Funkhouser and Shi-Min Hu
    We prove both in the smooth and discrete setting that the Hessian of an elastic deformation energy results in a proper Riemannian metric on the space of shells (modulo rigid body motions). Based on this foundation we develop a time- and space-discrete geodesic calculus. In particular we show how to shoot geodesics with prescribed initial data, and we give a construction for parallel transport in shell space. This enables, for example, natural extrapolation of paths in shell space and transfer of large nonlinear deformations from one shell to another with applications in animation, geometric, and physical modeling. Finally, we examine some aspects of curvature on shell space.
  • Item
    As-Conformal-As-Possible Surface Registration
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Yoshiyasu, Yusuke; Ma, Wan-Chun; Yoshida, Eiichi; Kanehiro, Fumio; Thomas Funkhouser and Shi-Min Hu
    We present a non-rigid surface registration technique that can align surfaces with sizes and shapes that are different from each other, while avoiding mesh distortions during deformation. The registration is constrained locally as conformal as possible such that the angles of triangle meshes are preserved, yet local scales are allowed to change. Based on our conformal registration technique, we devise an automatic registration and interactive registration technique, which can reduce user interventions during template fitting. We demonstrate the versatility of our technique on a wide range of surfaces.
  • Item
    Remeshing-assisted Optimization for Locally Injective Mappings
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Jin, Yao; Huang, Jin; Tong, Ruofeng; Thomas Funkhouser and Shi-Min Hu
    Constructing locally injective mappings for 2D triangular meshes is vital in applications such as deformations. In such a highly constrained optimization, the prescribed tessellation may impose strong restriction on the solution. As a consequence, the feasible region may be too small to contain an ideal solution, which leads to problems of slow convergence, poor solution, or even that no solution can be found. We propose to integrate adaptive remeshing into interior point method to solve this issue. We update the vertex positions via a parameter-free relaxation enhanced geometry optimization, and then use edge-flip operations to reduce the residual and keep a reasonable condition number for better convergence. For more robustness, when the iteration of interior point method terminates but leaves the positional constraints unsatisfied, we estimate the edges in the current tessellation that block vertices moving based on the convergence information of the optimization, and then split neighboring edges to break the restriction. The results show that our method has better performance than the solely geometric optimization approaches, especially for extreme deformations.
  • Item
    Cross-Collection Map Inference by Intrinsic Alignment of Shape Spaces
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Shapira, Nitzan; Ben-Chen, Mirela; Thomas Funkhouser and Shi-Min Hu
    Inferring maps between shapes is a long standing problem in geometry processing. The less similar the shapes are, the harder it is to compute a map, or even define criteria to evaluate it. In many cases, shapes appear as part of a collection, e.g. an animation or a series of faces or poses of the same character, where the shapes are similar enough, such that maps within the collection are easy to obtain. Our main observation is that given two collections of shapes whose ''shape space'' structure is similar, it is possible to find a correspondence between the collections, and then compute a cross-collection map. The cross-map is given as a functional correspondence, and thus it is more appropriate in cases where a bijective point-to-point map is not well defined. Our core idea is to treat each collection as a point-sampling from a low-dimensional shape-space manifold, and use dimensionality reduction techniques to find a low-dimensional Euclidean embedding of this sampling. To measure distances on the shape-space manifold, we use the recently introduced shape differences, which lead to a similar low-dimensional structure of the shape spaces, even if the shapes themselves are quite different. This allows us to use standard affine registration for point-clouds to align the shape-spaces, and then find a functional cross-map using a linear solve. We demonstrate the results of our algorithm on various shape collections and discuss its properties.