Detail‐Preserving Explicit Mesh Projection and Topology Matching for Particle‐Based Fluids

No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
© 2017 The Eurographics Association and John Wiley & Sons Ltd.
Abstract
We propose a new explicit surface tracking approach for particle‐based fluid simulations. Our goal is to advect and update a highly detailed surface, while only computing a coarse simulation. Current explicit surface methods lose surface details when projecting on the isosurface of an implicit function built from particles. Our approach uses a detail‐preserving projection, based on a signed distance field, to prevent the divergence of the explicit surface without losing its initial details. Furthermore, we introduce a novel topology matching stage that corrects the topology of the explicit surface based on the topology of an implicit function. To that end, we introduce an optimization approach to update our explicit mesh signed distance field before remeshing. Our approach is successfully used to preserve the surface details of melting and highly viscous objects, and shown to be stable by handling complex cases involving multiple topological changes. Compared to the computation of a high‐resolution simulation, using our approach with a coarse fluid simulation significantly reduces the computation time and improves the quality of the resulting surface.We propose a new explicit surface tracking approach for particle‐based fluid simulations. Our goal is to advect and update a highly detailed surface, while only computing a coarse simulation. Current explicit surface methods lose surface details when projecting on the isosurface of an implicit function built from particles. Our approach uses a detail‐preserving projection, based on a signed distance field, to prevent the divergence of the explicit surface without losing its initial details. Furthermore, we introduce a novel topology matching stage that corrects the topology of the explicit surface based on the topology of an implicit function. To that end, we introduce an optimization approach to update our explicit mesh signed distance field before remeshing.
Description

        
@article{
10.1111:cgf.13091
, journal = {Computer Graphics Forum}, title = {{
Detail‐Preserving Explicit Mesh Projection and Topology Matching for Particle‐Based Fluids
}}, author = {
Dagenais, F.
 and
Gagnon, J.
 and
Paquette, E.
}, year = {
2017
}, publisher = {
© 2017 The Eurographics Association and John Wiley & Sons Ltd.
}, ISSN = {
1467-8659
}, DOI = {
10.1111/cgf.13091
} }
Citation
Collections