Browsing by Author "Beyer, Johanna"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item ARrow: A Real-Time AR Rowing Coach(The Eurographics Association, 2023) Iannucci, Elena; Chen, Zhutian; Armeni, Iro; Pollefeys, Marc; Pfister, Hanspeter; Beyer, Johanna; Hoellt, Thomas; Aigner, Wolfgang; Wang, BeiRowing requires physical strength and endurance in athletes as well as a precise rowing technique. The ideal rowing stroke is based on biomechanical principles and typically takes years to master. Except for time-consuming video analysis after practice, coaches currently have no means to quantitatively analyze a rower's stroke sequence and body movement. We propose ARrow, an AR application for coaches and athletes that provides real-time and situated feedback on a rower's body position and stroke. We use computer vision techniques to extract the rower's 3D skeleton and to detect the rower's stroke cycle. ARrow provides visual feedback on three levels: Tracking of basic performance metrics over time, visual feedback and guidance on a rower's stroke sequence, and a rowing ghost view that helps synchronize the body movement of two rowers. We developed ARrow in close colaboration with international rowing coaches and demonstrate its usefulness in a user study with athletes and coaches.Item Barrio: Customizable Spatial Neighborhood Analysis and Comparison for Nanoscale Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2022) Troidl, Jakob; Cali, Corrado; Gröller, Eduard; Pfister, Hanspeter; Hadwiger, Markus; Beyer, Johanna; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasHigh-resolution electron microscopy imaging allows neuroscientists to reconstruct not just entire cells but individual cell substructures (i.e., cell organelles) as well. Based on these data, scientists hope to get a better understanding of brain function and development through detailed analysis of local organelle neighborhoods. In-depth analyses require efficient and scalable comparison of a varying number of cell organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need to be able to analyze the 3D morphologies of organelles, their spatial distributions and distances, and their spatial correlations. We have designed Barrio as a configurable framework that scientists can adjust to their preferred workflow, visualizations, and supported user interactions for their specific tasks and domain questions. Furthermore, Barrio provides a scalable comparative visualization approach for spatial neighborhoods that automatically adjusts visualizations based on the number of structures to be compared. Barrio supports small multiples of spatial 3D views as well as abstract quantitative views, and arranges them in linked and juxtaposed views. To adapt to new domain-specific analysis scenarios, we allow the definition of individualized visualizations and their parameters for each analysis session. We present an in-depth case study for mitochondria analysis in neuronal tissue and demonstrate the usefulness of Barrio in a qualitative user study with neuroscientists.Item Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach(The Eurographics Association, 2023) Harth, Philipp; Bast, Arco; Troidl, Jakob; Meulemeester, Bjorge; Pfister, Hanspeter; Beyer, Johanna; Oberlaender, Marcel; Hege, Hans-Christian; Baum, Daniel; Hansen, Christian; Procter, James; Renata G. Raidou; Jönsson, Daniel; Höllt, ThomasVisualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research.Item A Survey of Visualization and Analysis in High-Resolution Connectomics(The Eurographics Association and John Wiley & Sons Ltd., 2022) Beyer, Johanna; Troidl, Jakob; Boorboor, Saeed; Hadwiger, Markus; Kaufman, Arie; Pfister, Hanspeter; Bruckner, Stefan; Turkay, Cagatay; Vrotsou, KaterinaThe field of connectomics aims to reconstruct the wiring diagram of neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the neuronal connectivity, however, relies on many individual steps, starting from high-resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state-of-the-art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open-source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.Item VICE: Visual Identification and Correction of Neural Circuit Errors(The Eurographics Association and John Wiley & Sons Ltd., 2021) Gonda, Felix; Wang, Xueying; Beyer, Johanna; Hadwiger, Markus; Lichtman, Jeff W.; Pfister, Hanspeter; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonA connectivity graph of neurons at the resolution of single synapses provides scientists with a tool for understanding the nervous system in health and disease. Recent advances in automatic image segmentation and synapse prediction in electron microscopy (EM) datasets of the brain have made reconstructions of neurons possible at the nanometer scale. However, automatic segmentation sometimes struggles to segment large neurons correctly, requiring human effort to proofread its output. General proofreading involves inspecting large volumes to correct segmentation errors at the pixel level, a visually intensive and time-consuming process. This paper presents the design and implementation of an analytics framework that streamlines proofreading, focusing on connectivity-related errors. We accomplish this with automated likely-error detection and synapse clustering that drives the proofreading effort with highly interactive 3D visualizations. In particular, our strategy centers on proofreading the local circuit of a single cell to ensure a basic level of completeness. We demonstrate our framework's utility with a user study and report quantitative and subjective feedback from our users. Overall, users find the framework more efficient for proofreading, understanding evolving graphs, and sharing error correction strategies.