Browsing by Author "Soler, Cyril"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Data-Driven Paradigm for Precomputed Radiance Transfer(ACM Association for Computing Machinery, 2022) Belcour, Laurent; Deliot, Thomas; Barbier, Wilhem; Soler, Cyril; Josef Spjut; Marc Stamminger; Victor ZordanIn this work, we explore a change of paradigm to build Precomputed Radiance Transfer (PRT) methods in a data-driven way. This paradigm shift allows us to alleviate the difficulties of building traditional PRT methods such as defining a reconstruction basis, coding a dedicated path tracer to compute a transfer function, etc. Our objective is to pave the way for Machine Learned methods by providing a simple baseline algorithm. More specifically, we demonstrate real-time rendering of indirect illumination in hair and surfaces from a few measurements of direct lighting.We build our baseline from pairs of direct and indirect illumination renderings using only standard tools such as Singular Value Decomposition (SVD) to extract both the reconstruction basis and transfer function.Item A Low-Dimensional Perceptual Space for Intuitive BRDF Editing(The Eurographics Association, 2021) Shi, Weiqi; Wang, Zeyu; Soler, Cyril; Rushmeier, Holly; Bousseau, Adrien and McGuire, MorganUnderstanding and characterizing material appearance based on human perception is challenging because of the highdimensionality and nonlinearity of reflectance data. We refer to the process of identifying specific characteristics of material appearance within the same category as material estimation, in contrast to material categorization which focuses on identifying inter-category differences [FNG15]. In this paper, we present a method to simulate the material estimation process based on human perception. We create a continuous perceptual space for measured tabulated data based on its underlying low-dimensional manifold. Unlike many previous works that only address individual perceptual attributes (such as gloss), we focus on extracting all possible dimensions that can explain the perceived differences between appearances. Additionally, we propose a new material editing interface that combines image navigation and sliders to visualize each perceptual dimension and facilitate the editing of tabulated BRDFs. We conduct a user study to evaluate the efficacy of the perceptual space and the interface in terms of appearance matching.Item Perceptual Quality of BRDF Approximations: Dataset and Metrics(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lavoué, Guillaume; Bonneel, Nicolas; Farrugia, Jean-Philippe; Soler, Cyril; Mitra, Niloy and Viola, IvanBidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While measured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for storage efficiency reasons. These approximations are often obtained by minimizing metrics such as L2-or weighted quadratic- distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context, which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp, optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments.