Browsing by Author "Lefebvre, Sylvain"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Closed Space-filling Curves with Controlled Orientation for 3D Printing(The Eurographics Association and John Wiley & Sons Ltd., 2022) Bedel, Adrien; Coudert-Osmont, Yoann; Martínez, Jonàs; Nishat, Rahnuma Islam; Whitesides, Sue; Lefebvre, Sylvain; Chaine, Raphaëlle; Kim, Min H.We explore the optimization of closed space-filling curves under orientation objectives. By solidifying material along the closed curve, solid layers of 3D prints can be manufactured in a single continuous extrusion motion. The control over orientation enables the deposition to align with specific directions in different areas, or to produce a locally uniform distribution of orientations, patterning the solidified volume in a precisely controlled manner. Our optimization framework proceeds in two steps. First, we cast a combinatorial problem, optimizing Hamiltonian cycles within a specially constructed graph. We rely on a stochastic optimization process based on local operators that modify a cycle while preserving its Hamiltonian property. Second, we use the result to initialize a geometric optimizer that improves the smoothness and uniform coverage of the cycle while further optimizing for alignment and orientation objectives.Item Procedural Bridges-and-pillars Support Generation(The Eurographics Association, 2022) Freire, Marco; Hornus, Samuel; Perchy, Salim; Lefebvre, Sylvain; Pelechano, Nuria; Vanderhaeghe, DavidAdditive manufacturing requires support structures to fabricate parts with overhangs. In this paper, we revisit a known support structure based on bridges-and-pillars (see Figure 1). The support structures are made of vertical pillars supporting horizontal bridges. Their scaffolding structure makes them stable and reliable to print. However, the algorithm heuristic search does not scale well and is prone to produce contacts with the parts, leaving scars after removal. We propose a novel algorithm for this type of supports, focusing on avoiding unnecessary contacts with the part as much as possible. Our approach builds upon example-based model synthesis to enable early detection of collision-free passages as well as non-reachable regions.Item Restricted Power Diagrams on the GPU(The Eurographics Association and John Wiley & Sons Ltd., 2021) Basselin, Justine; Alonso, Laurent; Ray, Nicolas; Sokolov, Dmitry; Lefebvre, Sylvain; Lévy, Bruno; Mitra, Niloy and Viola, IvanWe propose a method to simultaneously decompose a 3D object into power diagram cells and to integrate given functions in each of the obtained simple regions.We offer a novel, highly parallel algorithm that lends itself to an efficient GPU implementation. It is optimized for algorithms that need to compute many decompositions, for instance, centroidal Voronoi tesselation algorithms and incompressible fluid dynamics simulations. We propose an efficient solution that directly evaluates the integrals over every cell without computing the power diagram explicitly and without intersecting it with a tetrahedralization of the domain. Most computations are performed on the fly, without storing the power diagram. We manipulate a triangulation of the boundary of the domain (instead of tetrahedralizing the domain) to speed up the process. Moreover, the cells are treated independently one from another, making it possible to trivially scale up on a parallel architecture. Despite recent Voronoi diagram generation methods optimized for the GPU, computing integrals over restricted power diagrams still poses significant challenges; the restriction to a complex simulation domain is difficult and likely to be slow. It is not trivial to determine when a cell of a power diagram is completely computed, and the resulting integrals (e.g. the weighted Laplacian operator matrix) do not fit into fast (shared) GPU memory. We address all these issues and boost the performance of the state-of-the-art algorithms by a factor 2 to 3 for (unrestricted) Voronoi diagrams and ax50 speed-up with respect to CPU implementations for restricted power diagrams. An essential ingredient to achieve this is our new scheduling strategy that allows us to treat each Voronoi/power diagram cell with optimal settings and to benefit from the fast memory.Item Rethinking Texture Mapping(The Eurographics Association and John Wiley & Sons Ltd., 2019) Yuksel, Cem; Lefebvre, Sylvain; Tarini, Marco; Giachetti, Andrea and Rushmeyer, HollyThe intrinsic problems of texture mapping, regarding its difficulties in content creation and the visual artifacts it causes in rendering, are well-known, but often considered unavoidable. In this state of the art report, we discuss various radically different ways to rethink texture mapping that have been proposed over the decades, each offering different advantages and trade-offs. We provide a brief description of each alternative texturing method along with an evaluation of its strengths and weaknesses in terms of applicability, usability, filtering quality, performance, and potential implementation related challenges.Item Ribbed Support Vaults for 3D Printing of Hollowed Objects(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Tricard, Thibault; Claux, Frédéric; Lefebvre, Sylvain; Benes, Bedrich and Hauser, HelwigAdditive manufacturing techniques form an object by accumulating layers of material on top of one another. Each layer has to be supported by the one below for the fabrication process to succeed. To reduce print time and material usage, especially in the context of prototyping, it is often desirable to fabricate hollow objects. This exacerbates the requirement of support between consecutive layers: standard hollowing produces surfaces in overhang that cannot be directly fabricated anymore. Therefore, these surfaces require support structures. These are similar to external supports for overhangs, with the key difference that internal supports remain invisible within the object after fabrication. A fundamental challenge is to generate structures that provide a dense support while using little material. In this paper, we propose a novel type of support inspired by rib structures. Our approach guarantees that any point in a layer is supported by a point below, within a given threshold distance. Despite providing strong guarantees for printability, our supports remain lightweight and reliable to print. We propose a greedy support generation algorithm that creates compact hierarchies of rib‐like walls. The walls are progressively eroded away and straightened, eventually merging with the interior object walls. We demonstrate our technique on a variety of models and provide performance figures in the context of fused filament fabrication 3D printing.