Browsing by Author "Gröller, Eduard"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item Barrio: Customizable Spatial Neighborhood Analysis and Comparison for Nanoscale Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2022) Troidl, Jakob; Cali, Corrado; Gröller, Eduard; Pfister, Hanspeter; Hadwiger, Markus; Beyer, Johanna; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasHigh-resolution electron microscopy imaging allows neuroscientists to reconstruct not just entire cells but individual cell substructures (i.e., cell organelles) as well. Based on these data, scientists hope to get a better understanding of brain function and development through detailed analysis of local organelle neighborhoods. In-depth analyses require efficient and scalable comparison of a varying number of cell organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need to be able to analyze the 3D morphologies of organelles, their spatial distributions and distances, and their spatial correlations. We have designed Barrio as a configurable framework that scientists can adjust to their preferred workflow, visualizations, and supported user interactions for their specific tasks and domain questions. Furthermore, Barrio provides a scalable comparative visualization approach for spatial neighborhoods that automatically adjusts visualizations based on the number of structures to be compared. Barrio supports small multiples of spatial 3D views as well as abstract quantitative views, and arranges them in linked and juxtaposed views. To adapt to new domain-specific analysis scenarios, we allow the definition of individualized visualizations and their parameters for each analysis session. We present an in-depth case study for mitochondria analysis in neuronal tissue and demonstrate the usefulness of Barrio in a qualitative user study with neuroscientists.Item CoSi: Visual Comparison of Similarities in High-Dimensional Data Ensembles(The Eurographics Association, 2021) Heim, Anja; Gröller, Eduard; Heinzl, Christoph; Andres, Bjoern and Campen, Marcel and Sedlmair, MichaelComparative analysis of multivariate datasets, e.g. of advanced materials regarding the characteristics of internal structures (fibers, pores, etc.), is of crucial importance in various scientific disciplines. Currently domain experts in materials science mostly rely on sequential comparison of data using juxtaposition. Our work assists domain experts to perform detailed comparative analyses of large ensemble data in materials science applications. For this purpose, we developed a comparative visualization framework, that includes a tabular overview and three detailed visualization techniques to provide a holistic view on the similarities in the ensemble. We demonstrate the applicability of our framework on two specific usage scenarios and verify its techniques using a qualitative user study with 12 material experts. The insights gained from our work represent a significant advancement in the field of comparative material analysis of high-dimensional data. Our framework provides experts with a novel perspective on the data and eliminates the need for time-consuming sequential exploration of numerical data.Item Lessons Learnt from Developing Visual Analytics Applications for Adaptive Prostate Cancer Radiotherapy(The Eurographics Association, 2020) Raidou, Renata Georgia; Furmanová, Katarína; Grossmann, Nicolas; Casares-Magaz, Oscar; Moiseenko, Vitali; Einck, John P.; Gröller, Eduard; Muren, Ludvig P.; Gillmann, Christina and Krone, Michael and Reina, Guido and Wischgoll, ThomasIn radiotherapy (RT), changes in patient anatomy throughout the treatment period might lead to deviations between planned and delivered dose, resulting in inadequate tumor coverage and/or overradiation of healthy tissues. Adapting the treatment to account for anatomical changes is anticipated to enable higher precision and less toxicity to healthy tissues. Corresponding tools for the in-depth exploration and analysis of available clinical cohort data were not available before our work. In this paper, we discuss our on-going process of introducing visual analytics to the domain of adaptive RT for prostate cancer. This has been done through the design of three visual analytics applications, built for clinical researchers working on the deployment of robust RT treatment strategies. We focus on describing our iterative design process, and we discuss the lessons learnt from our fruitful collaboration with clinical domain experts and industry, interested in integrating our prototypes into their workflow.Item ManyLands: A Journey Across 4D Phase Space of Trajectories(The Eurographics Association and John Wiley & Sons Ltd., 2019) Amirkhanov, Aleksandr; Kosiuk, Ilona; Szmolyan, Peter; Amirkhanov, Artem; Mistelbauer, Gabriel; Gröller, Eduard; Raidou, Renata Georgia; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonMathematical models of ordinary differential equations are used to describe and understand biological phenomena. These models are dynamical systems that often describe the time evolution of more than three variables, i.e., their dynamics take place in a multi-dimensional space, called the phase space. Currently, mathematical domain scientists use plots of typical trajectories in the phase space to analyze the qualitative behavior of dynamical systems. These plots are called phase portraits and they perform well for 2D and 3D dynamical systems. However, for 4D, the visual exploration of trajectories becomes challenging, as simple subspace juxtaposition is not sufficient. We propose ManyLands to support mathematical domain scientists in analyzing 4D models of biological systems. By describing the subspaces as Lands, we accompany domain scientists along a continuous journey through 4D HyperLand, 3D SpaceLand, and 2D FlatLand, using seamless transitions. The Lands are also linked to 1D TimeLines. We offer an additional dissected view of trajectories that relies on small-multiple compass-alike pictograms for easy navigation across subspaces and trajectory segments of interest. We show three use cases of 4D dynamical systems from cell biology and biochemistry. An informal evaluation with mathematical experts confirmed that ManyLands helps them to visualize and analyze complex 4D dynamics, while facilitating mathematical experiments and simulations.Item MuSIC: Multi-Sequential Interactive Co-Registration for Cancer Imaging Data based on Segmentation Masks(The Eurographics Association, 2022) Eichner, Tanja; Mörth, Eric; Wagner-Larsen, Kari S.; Lura, Njål; Haldorsen, Ingfrid S.; Gröller, Eduard; Bruckner, Stefan; Smit, Noeska N.; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuIn gynecologic cancer imaging, multiple magnetic resonance imaging (MRI) sequences are acquired per patient to reveal different tissue characteristics. However, after image acquisition, the anatomical structures can be misaligned in the various sequences due to changing patient location in the scanner and organ movements. The co-registration process aims to align the sequences to allow for multi-sequential tumor imaging analysis. However, automatic co-registration often leads to unsatisfying results. To address this problem, we propose the web-based application MuSIC (Multi-Sequential Interactive Co-registration). The approach allows medical experts to co-register multiple sequences simultaneously based on a pre-defined segmentation mask generated for one of the sequences. Our contributions lie in our proposed workflow. First, a shape matching algorithm based on dual annealing searches for the tumor position in each sequence. The user can then interactively adapt the proposed segmentation positions if needed. During this procedure, we include a multi-modal magic lens visualization for visual quality assessment. Then, we register the volumes based on the segmentation mask positions. We allow for both rigid and deformable registration. Finally, we conducted a usability analysis with seven medical and machine learning experts to verify the utility of our approach. Our participants highly appreciate the multi-sequential setup and see themselves using MuSIC in the future.Item Pelvis Runner: Visualizing Pelvic Organ Variability in a Cohort of Radiotherapy Patients(The Eurographics Association, 2019) Grossmann, Nicolas; Casares-Magaz, Oscar; Muren, Ludvig Paul; Moiseenko, Vitali; Einck, John P.; Gröller, Eduard; Raidou, Renata Georgia; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaIn radiation therapy, anatomical changes in the patient might lead to deviations between the planned and delivered dose- including inadequate tumor coverage, and overradiation of healthy tissues. Exploring and analyzing anatomical changes throughout the entire treatment period can help clinical researchers to design appropriate treatment strategies, while identifying patients that are more prone to radiation-induced toxicity. We present the Pelvis Runner, a novel application for exploring the variability of segmented pelvic organs in multiple patients, across the entire radiation therapy treatment process. Our application addresses (i) the global exploration and analysis of pelvic organ shape variability in an abstracted tabular view and (ii) the local exploration and analysis thereof in anatomical 2D/3D views, where comparative and ensemble visualizations are integrated. The workflow is based on available retrospective cohort data, which incorporate segmentations of the bladder, the prostate, and the rectum through the entire radiation therapy process. The Pelvis Runner is applied to four usage scenarios, which were conducted with two clinical researchers, i.e., medical physicists. Our application provides clinical researchers with promising support in demonstrating the significance of treatment plan adaptation to anatomical changes.Item preha: Establishing Precision Rehabilitation with Visual Analytics(The Eurographics Association, 2019) Bernold, Georg; Matkovic, Kresimir; Gröller, Eduard; Raidou, Renata Georgia; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaThis design study paper describes preha, a novel visual analytics application in the field of in-patient rehabilitation. We conducted extensive interviews with the intended users, i.e., engineers and clinical rehabilitation experts, to determine specific requirements of their analytical process.We identified nine tasks, for which suitable solutions have been designed and developed in the flexible environment of kibana. Our application is used to analyze existing rehabilitation data from a large cohort of 46,000 patients, and it is the first integrated solution of its kind. It incorporates functionalities for data preprocessing (profiling, wrangling and cleansing), storage, visualization, and predictive analysis on the basis of retrospective outcomes. A positive feedback from the first evaluation with domain experts indicates the usefulness of the newly proposed approach and represents a solid foundation for the introduction of visual analytics to the rehabilitation domain.Item A Process Model for Dashboard Onboarding(The Eurographics Association and John Wiley & Sons Ltd., 2022) Dhanoa, Vaishali; Walchshofer, Conny; Hinterreiter, Andreas; Stitz, Holger; Gröller, Eduard; Streit, Marc; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasDashboards are used ubiquitously to gain and present insights into data by means of interactive visualizations. To bridge the gap between non-expert dashboard users and potentially complex datasets and/or visualizations, a variety of onboarding strategies are employed, including videos, narration, and interactive tutorials. We propose a process model for dashboard onboarding that formalizes and unifies such diverse onboarding strategies. Our model introduces the onboarding loop alongside the dashboard usage loop. Unpacking the onboarding loop reveals how each onboarding strategy combines selected building blocks of the dashboard with an onboarding narrative. Specific means are applied to this narration sequence for onboarding, which results in onboarding artifacts that are presented to the user via an interface. We concretize these concepts by showing how our process model can be used to describe a selection of real-world onboarding examples. Finally, we discuss how our model can serve as an actionable blueprint for developing new onboarding systems.Item Slice and Dice: A Physicalization Workflow for Anatomical Edutainment(The Eurographics Association and John Wiley & Sons Ltd., 2020) Raidou, Renata Georgia; Gröller, Eduard; Wu, Hsiang-Yun; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueDuring the last decades, anatomy has become an interesting topic in education-even for laymen or schoolchildren. As medical imaging techniques become increasingly sophisticated, virtual anatomical education applications have emerged. Still, anatomical models are often preferred, as they facilitate 3D localization of anatomical structures. Recently, data physicalizations (i.e., physical visualizations) have proven to be effective and engaging-sometimes, even more than their virtual counterparts. So far, medical data physicalizations involve mainly 3D printing, which is still expensive and cumbersome. We investigate alternative forms of physicalizations, which use readily available technologies (home printers) and inexpensive materials (paper or semi-transparent films) to generate crafts for anatomical edutainment. To the best of our knowledge, this is the first computergenerated crafting approach within an anatomical edutainment context. Our approach follows a cost-effective, simple, and easy-to-employ workflow, resulting in assemblable data sculptures (i.e., semi-transparent sliceforms). It primarily supports volumetric data (such as CT or MRI), but mesh data can also be imported. An octree slices the imported volume and an optimization step simplifies the slice configuration, proposing the optimal order for easy assembly. A packing algorithm places the resulting slices with their labels, annotations, and assembly instructions on a paper or transparent film of user-selected size, to be printed, assembled into a sliceform, and explored. We conducted two user studies to assess our approach, demonstrating that it is an initial positive step towards the successful creation of interactive and engaging anatomical physicalizations.Item Visual Analytics in Dental Aesthetics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Amirkhanov, Aleksandr; Bernhard, Matthias; Karimov, Alexey; Stiller, Sabine; Geier, Andreas; Gröller, Eduard; Mistelbauer, Gabriel; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueDental healthcare increasingly employs computer-aided design software, to provide patients with high-quality dental prosthetic devices. In modern dental reconstruction, dental technicians address the unique anatomy of each patient individually, by capturing the dental impression and measuring the mandibular movements. Subsequently, dental technicians design a custom denture that fits the patient from a functional point of view. The current workflow does not include a systematic analysis of aesthetics, and dental technicians rely only on an aesthetically pleasing mock-up that they discuss with the patient, and on their experience. Therefore, the final denture aesthetics remain unknown until the dental technicians incorporate the denture into the patient. In this work, we present a solution that integrates aesthetics analysis into the functional workflow of dental technicians. Our solution uses a video recording of the patient, to preview the denture design at any stage of the denture design process. We present a teeth pose estimation technique that enables denture preview and a set of linked visualizations that support dental technicians in the aesthetic design of dentures. These visualizations assist dental technicians in choosing the most aesthetically fitting preset from a library of dentures, in identifying the suitable denture size, and in adjusting the denture position. We demonstrate the utility of our system with four use cases, explored by a dental technician. Also, we performed a quantitative evaluation for teeth pose estimation, and an informal usability evaluation, with positive outcomes concerning the integration of aesthetics analysis into the functional workflow.Item VisualFlatter - Visual Analysis of Distortions in the Projection of Biomedical Structures(The Eurographics Association, 2018) Grossmann, Nicolas; Köppel, Thomas; Gröller, Eduard; Raidou, Renata Georgia; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauProjections of complex anatomical or biological structures from 3D to 2D are often used by visualization and domain experts to facilitate inspection and understanding. Representing complex structures, such as organs or molecules, in a simpler 2D way often requires less interaction, while enabling comparability. However, the most commonly employed projection methods introduce size or shape distortions, in the resulting 2D representations. While simple projections display known distortion patterns, more complex projection algorithms are not easily predictable.We propose the VisualFlatter, a visual analysis tool that enables visualization and domain experts to explore and analyze projection-induced distortions, in a structured way. Our tool provides a way to identify projected regions with semantically relevant distortions and allows users to comparatively analyze distortion outcomes, either from alternative projection methods or due to different setups through the projection pipeline. The user is given the ability to improve the initial projection configuration, after comparing different setups. We demonstrate the functionality of our tool using four scenarios of 3D to 2D projections, conducted with the help of domain or visualization experts working on different application fields. We also performed a wider evaluation with 13 participants, familiar with projections, to assess the usability and functionality of the Visual Flatter.Item WithTeeth: Denture Preview in Augmented Reality(The Eurographics Association, 2018) Amirkhanov, Aleksandr; Amirkhanov, Artem; Bernhard, Matthias; Toth, Zsolt; Stiller, Sabine; Geier, Andreas; Gröller, Eduard; Mistelbauer, Gabriel; Beck, Fabian and Dachsbacher, Carsten and Sadlo, FilipDentures are prosthetic devices replacing missing or damaged teeth, often used for dental reconstruction. Dental reconstruction improves the functional state and aesthetic appearance of teeth. State-of-the-art methods used by dental technicians typically do not include the aesthetic analysis, which often leads to unsatisfactory results for patients. In this paper, we present a virtual mirror approach for a dental treatment preview in augmented reality. Different denture presets are visually evaluated and compared by switching them on the fly. Our main goals are to provide a virtual dental treatment preview to facilitate early feedback, and hence to build the confidence and trust of patients in the outcome. The workflow of our algorithm is as follows. First, the face is detected and 2D facial landmarks are extracted. Then, 3D pose estimation of upper and lower jaws is performed and high-quality 3D models of the upper and lower dentures are fitted. The fitting uses the occlusal plane angle as determined mnually by dental technicians. To provide a realistic impression of the virtual teeth, the dentures are rendered with motion blur. We demonstrate the robustness and visual quality of our approach by comparing the results of a webcam to a DSLR camera under natural, as well as controlled lighting conditions.