Browsing by Author "Guthe, Stefan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Alignment and Reassembly of Broken Specimens for Creep Ductility Measurements(The Eurographics Association, 2022) Knauthe, Volker; Kraus, Maurice; Buelow, Max von; Wirth, Tristan; Rak, Arne; Merth, Laurenz; Erbe, Alexander; Kontermann, Christian; Guthe, Stefan; Kuijper, Arjan; Fellner, Dieter W.; Bender, Jan; Botsch, Mario; Keim, Daniel A.Designing new types of heat-resistant steel components is an important and active research field in material science. It requires detailed knowledge of the inherent steel properties, especially concerning their creep ductility. Highly precise automatic stateof- the-art approaches for such measurements are very expensive and often times invasive. The alternative requires manual work from specialists and is time consuming and unrobust. In this paper, we present a novel approach that uses a photometric scanning system for capturing the geometry of steel specimens, making further measurement extractions possible. In our proposed system, we apply calibration for pan angles that occur during capturing and a robust reassembly for matching two broken specimen pieces to extract the specimen's geometry. We compare our results against µCT scans and found that it deviates by 0.057mm on average distributed over the whole specimen for a small amount of 36 captured images. Additionally, comparisons to manually measured values indicate that our system leads to more robust measurements.Item Data Reconstruction from Colored Slice-and-Dice Treemaps(The Eurographics Association, 2020) Henkel, Markus; Knauthe, Volker; Landesberger, Tatiana von; Guthe, Stefan; Krüger, Jens and Niessner, Matthias and Stückler, JörgTreemaps illustrate hierarchical data, such as file systems or budget structures. Colors are often used to encode additional information or to emphasize the tree structure. Given a treemap, one may want to retrieve the underlying data. However, treemap reconstruction is challenging, as the inner tree structure needs to be derived almost exclusively from leaf node rectangles. Furthermore, treemaps are well known to suffer from ambiguities, i.e., different input data may produce the same drawing. We present a novel reconstruction approach for slice-and-dice treemaps. Moreover, we evaluate the influence of five color schemes to resolve ambiguities. Our work can be used for the reproducibility of published data and for assessing ambiguities in slice-and-dice treemaps.Item Fine-Grained Memory Profiling of GPGPU Kernels(The Eurographics Association and John Wiley & Sons Ltd., 2022) Buelow, Max von; Guthe, Stefan; Fellner, Dieter W.; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneMemory performance is a crucial bottleneck in many GPGPU applications, making optimizations for hardware and software mandatory. While hardware vendors already use highly efficient caching architectures, software engineers usually have to organize their data accordingly in order to efficiently make use of these, requiring deep knowledge of the actual hardware. In this paper we present a novel technique for fine-grained memory profiling that simulates the whole pipeline of memory flow and finally accumulates profiling values in a way that the user retains information about the potential region in the GPU program by showing these values separately for each allocation. Our memory simulator turns out to outperform state-of-theart memory models of NVIDIA architectures by a magnitude of 2.4 for the L1 cache and 1.3 for the L2 cache, in terms of accuracy. Additionally, we find our technique of fine grained memory profiling a useful tool for memory optimizations, which we successfully show in case of ray tracing and machine learning applications.Item Fitness of General-Purpose Monocular Depth Estimation Architectures for Transparent Structures(The Eurographics Association, 2022) Wirth, Tristan; Jamili, Aria; Buelow, Max von; Knauthe, Volker; Guthe, Stefan; Pelechano, Nuria; Vanderhaeghe, DavidDue to material properties, monocular depth estimation of transparent structures is inherently challenging. Recent advances leverage additional knowledge that is not available in all contexts, i.e., known shape or depth information from a sensor. General-purpose machine learning models, that do not utilize such additional knowledge, have not yet been explicitly evaluated regarding their performance on transparent structures. In this work, we show that these models show poor performance on the depth estimation of transparent structures. However, fine-tuning on suitable data sets, such as ClearGrasp, increases their estimation performance on the task at hand. Our evaluations show that high performance on general-purpose benchmarks translates well into performance on transparent objects after fine-tuning. Furthermore, our analysis suggests, that state-of-theart high-performing models are not able to capture a high grade of detail from both the image foreground and background at the same time. This finding shows the demand for a combination of existing models to further enhance depth estimation quality.Item Lossless Compression of Multi-View Cultural Heritage Image Data(The Eurographics Association, 2019) von Buelow, Max; Guthe, Stefan; Ritz, Martin; Santos, Pedro; Fellner, Dieter W.; Rizvic, Selma and Rodriguez Echavarria, KarinaPhotometric multi-view 3D geometry reconstruction and material capture are important techniques for cultural heritage digitalization. Capturing images of artifacts with high resolution and high dynamic range and the possibility to store them losslessly enables future proof application of this data. As the images tend to consume immense amounts of storage, compression is essential for long time archiving. In this paper, we present a lossless image compression approach for multi-view and material reconstruction datasets with a strong focus on data created from cultural heritage digitalization. Our approach achieves compression rates of 2:1 compared against an uncompressed representation and 1.24:1 when compared against Gzip.