Browsing by Author "Dodgson, Neil A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Abstract Depiction of Human and Animal Figures: Examples from Two Centuries of Art and Craft(ACM, 2018) Dodgson, Neil A.; Aydın, Tunç and Sýkora, DanielThe human figure is important in art. I discuss examples of the abstract depiction of the human figure and the challenge faced in attempting to mimic algorithmically what human artists can achieve. The challenge lies in the workings of the human brain: we have enormous knowledge about the world and a particular ability to make fine distinctions about other humans from posture, clothing and expression. This allows a human to make assumptions about human figures from a tiny amount of data, and allows a human artist to take advantage of this when creating art. We look at examples from impressionist and post-impressionist painting, from cross-stitch and knitting, from pixelated renderings in early video games, and from the stylisation used by the artists of children's books.Item A Colour Interpolation Scheme for Topologically Unrestricted Gradient Meshes(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Lieng, Henrik; Kosinka, Jiří; Shen, Jingjing; Dodgson, Neil A.; Chen, Min and Zhang, Hao (Richard)Gradient meshes are a 2D vector graphics primitive where colour is interpolated between mesh vertices. The current implementations of gradient meshes are restricted to rectangular mesh topology. Our new interpolation method relaxes this restriction by supporting arbitrary manifold topology of the input gradient mesh. Our method is based on the Catmull‐Clark subdivision scheme, which is well‐known to support arbitrary mesh topology in 3D. We adapt this scheme to support gradient mesh colour interpolation, adding extensions to handle interpolation of colours of the control points, interpolation only inside the given colour space and emulation of gradient constraints seen in related closed‐form solutions. These extensions make subdivision a viable option for interpolating arbitrary‐topology gradient meshes for 2D vector graphics.Gradient meshes are a 2D vector graphics primitive where colour is interpolated between mesh vertices. The current implementations of gradient meshes are restricted to rectangular mesh topology. Our new interpolation method relaxes this restriction by supporting arbitrary manifold topology of the input gradient mesh. Our method is based on the Catmull‐Clark subdivision scheme, which is well‐known to support arbitrary mesh topology in 3D.Item Peripheral Vision in Simulated Driving: Comparing CAVE and Head-mounted Display(The Eurographics Association, 2021) Tanoi, Tana; Dodgson, Neil A.; Lee, Sung-Hee and Zollmann, Stefanie and Okabe, Makoto and Wünsche, BurkhardPeripheral vision is widely thought to be important but is not provided in the majority of head-mounted displays (HMD). We investigate whether peripheral vision is important in a simulated driving task. Our hypothesis is that subjects will be able to complete the task more quickly if they use their peripheral vision. We compared subject performance in a CAVE environment, with 270° field-of-view (so automatic peripheral vision) and in a HMD, with 110° field-of-view (so no peripheral vision but the ability to turn the head). Our results show almost no statistically significant differences between the two conditions. This contrasts with the opinions of our subjects: our expert users, in early tests, commented that peripheral vision helped in the task and the majority of our naïve subjects believed that the lack of peripheral vision in the HMD hindered them in the task.