Browsing by Author "Digne, Julie"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item FAKIR: An Algorithm for Revealing the Anatomy and Pose of Statues from Raw Point Sets(The Eurographics Association and John Wiley & Sons Ltd., 2020) Fu, Tong; Chaine, Raphaelle; Digne, Julie; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-Lue3D acquisition of archaeological artefacts has become an essential part of cultural heritage research for preservation or restoration purpose. Statues, in particular, have been at the center of many projects. In this paper, we introduce a way to improve the understanding of acquired statues representing real or imaginary creatures by registering a simple and pliable articulated model to the raw point set data. Our approach performs a Forward And bacKward Iterative Registration (FAKIR) which proceeds joint by joint, needing only a few iterations to converge. We are thus able to detect the pose and elementary anatomy of sculptures, with possibly non realistic body proportions. By adapting our simple skeleton, our method can work on animals and imaginary creatures.Item Geometry Processing 2021 CGF 40-5: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2021) Digne, Julie; Crane, Keenan; Digne, Julie and Crane, KeenanItem Super‐Resolution of Point Set Surfaces Using Local Similarities(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Hamdi‐Cherif, Azzouz; Digne, Julie; Chaine, Raphaëlle; Chen, Min and Benes, BedrichThree‐dimensional scanners provide a virtual representation of object surfaces at some given precision that depends on many factors such as the object material, the quality of the laser ray or the resolution of the camera. This precision may even vary over the surface, depending, for example, on the distance to the scanner which results in uneven and unstructured point sets, with an uncertainty on the coordinates. To enhance the quality of the scanner output, one usually resorts to local surface interpolation between measured points. However, object surfaces often exhibit interesting statistical features such as repetitive geometric textures. Building on this property, we propose a new approach for surface super‐resolution that detects repetitive patterns or self‐similarities and exploits them to improve the scan resolution by aggregating scattered measures. In contrast with other surface super‐resolution methods, our algorithm has two important advantages. First, when handling multiple scans, it does not rely on surface registration. Second, it is able to produce super‐resolution from even a single scan. These features are made possible by a new local shape description able to capture differential properties of order above 2. By comparing those descriptors, similarities are detected and used to generate a high‐resolution surface. Our results show a clear resolution gain over state‐of‐the‐art interpolation methods. Three‐dimensional scanners provide a virtual representation of object surfaces at some given precision that depends on many factors such as the object material, the quality of the laser ray or the resolution of the camera. This precision may even vary over the surface, depending, for example, on the distance to the scanner which results in uneven and unstructured point sets, with an uncertainty on the coordinates. To enhance the quality of the scanner output, one usually resorts to local surface interpolation between measured points. However, object surfaces often exhibit interesting statistical features such as repetitive geometric textures. Building on this property, we propose a new approach for surface super‐resolution that detects repetitive patterns or self‐similarities and exploits them to improve the scan resolution by aggregating scattered measures.Item A Survey of Optimal Transport for Computer Graphics and Computer Vision(The Eurographics Association and John Wiley & Sons Ltd., 2023) Bonneel, Nicolas; Digne, Julie; Bousseau, Adrien; Theobalt, ChristianOptimal transport is a long-standing theory that has been studied in depth from both theoretical and numerical point of views. Starting from the 50s this theory has also found a lot of applications in operational research. Over the last 30 years it has spread to computer vision and computer graphics and is now becoming hard to ignore. Still, its mathematical complexity can make it difficult to comprehend, and as such, computer vision and computer graphics researchers may find it hard to follow recent developments in their field related to optimal transport. This survey first briefly introduces the theory of optimal transport in layman's terms as well as most common numerical techniques to solve it. More importantly, it presents applications of these numerical techniques to solve various computer graphics and vision related problems. This involves applications ranging from image processing, geometry processing, rendering, fluid simulation, to computational optics, and many more. It is aimed at computer graphics researchers desiring to follow optimal transport research in their field as well as optimal transport researchers willing to find applications for their numerical algorithms.