Browsing by Author "Wilkie, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Efficient Storage and Importance Sampling for Fluorescent Reflectance(Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Hua, Q.; Tázlar, V.; Fichet, A.; Wilkie, A.; Hauser, Helwig and Alliez, PierreWe propose a technique for efficient storage and importance sampling of fluorescent spectral data. Fluorescence is fully described by a re‐radiation matrix, which for a given input wavelength indicates how much energy is re‐emitted at other wavelengths. However, such representation has a considerable memory footprint. To significantly reduce memory requirements, we propose the use of Gaussian mixture models for the representation of re‐radiation matrices. Instead of the full‐resolution matrix, we work with a set of Gaussian parameters that also allow direct importance sampling. Furthermore, if accuracy is of concern, a re‐radiation matrix can be used jointly with efficient importance sampling provided by the Gaussian mixture. In this paper, we present our pipeline for efficient storage of bispectral data and provide its extensive evaluation on a large set of bispectral measurements. We show that our method is robust and colour accurate even with its comparably minor memory requirements and that it can be seamlessly integrated into a standard Monte Carlo path tracer.Item Wide Gamut Moment‐based Constrained Spectral Uplifting(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Tódová, L.; Wilkie, A.; Fascione, L.; Hauser, Helwig and Alliez, PierreSpectral rendering is increasingly used in appearance‐critical rendering workflows due to its ability to predict colour values under varying illuminants. However, directly modelling assets via input of spectral data is a tedious process: and if asset appearance is defined via artist‐created textures, these are drawn in colour space, i.e. RGB. Converting these RGB values to equivalent spectral representations is an ambiguous problem, for which robust techniques have been proposed only comparatively recently. However, other than the resulting RGB values matching under the illuminant the RGB space is defined for (usually D65), these uplifting techniques do not provide the user with further control over the resulting spectral shape. In a recent publication, we have proposed a method for constraining the spectral uplifting process so that for a finite number of input spectra that need to be preserved, it always yields the correct uplifted spectrum for the corresponding RGB value. We extend this previous work, which supported the sRGB gamut only, by describing a method that is able to constrain any spectrum from within the gamut of realisable reflectances. Due to constraints placed on the uplifting process, target RGB values that are in close proximity to one another uplift to spectra within the same metameric family, so that textures with colour variations can be meaningfully uplifted. Renderings uplifted via our method show minimal discrepancies when compared to the original objects.