Browsing by Author "Chen, Jiong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cosserat Rod with rh-Adaptive Discretization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wen, Jiahao; Chen, Jiong; Nobuyuki, Umetani; Bao, Hujun; Huang, Jin; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueRod-like one-dimensional elastic objects often exhibit complex behaviors which pose great challenges to the discretization method for pursuing a faithful simulation. By only moving a small portion of material points, the Eulerian-on-Lagrangian (EoL) method already shows great adaptivity to handle sharp contact, but it is still far from enough to reproduce rich and complex geometry details arising in simulations. In this paper, we extend the discrete configuration space by unifying all Lagrangian and EoL nodes in representation for even more adaptivity with every sample being assigned with a dynamic material coordinate. However, this great extension will immediately bring in much more redundancy in the dynamic system. Therefore, we propose additional energy to control the spatial distribution of all material points, seeking to equally space them with respect to a curvature-based density field as a monitor. This flexible approach can effectively constrain the motion of material points to resolve numerical degeneracy, while simultaneously enables them to notably slide inside the parametric domain to account for the shape parameterization. Besides, to accurately respond to sharp contact, our method can also insert or remove nodes online and adjust the energy stiffness to suppress possible jittering artifacts that could be excited in a stiff system. As a result of this hybrid rh-adaption, our proposed method is capable of reproducing many realistic rod dynamics, such as excessive bending, twisting and knotting while only using a limited number of elements.Item Robust Pointset Denoising of Piecewise-Smooth Surfaces through Line Processes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Wei, Jiayi; Chen, Jiong; Rohmer, Damien; Memari, Pooran; Desbrun, Mathieu; Myszkowski, Karol; Niessner, MatthiasDenoising is a common, yet critical operation in geometry processing aiming at recovering high-fidelity models of piecewisesmooth objects from noise-corrupted pointsets. Despite a sizable literature on the topic, there is a dearth of approaches capable of processing very noisy and outlier-ridden input pointsets for which no normal estimates and no assumptions on the underlying geometric features or noise type are provided. In this paper, we propose a new robust-statistics approach to denoising pointsets based on line processes to offer robustness to noise and outliers while preserving sharp features possibly present in the data. While the use of robust statistics in denoising is hardly new, most approaches rely on prescribed filtering using data-independent blending expressions based on the spatial and normal closeness of samples. Instead, our approach deduces a geometric denoising strategy through robust and regularized tangent plane fitting of the initial pointset, obtained numerically via alternating minimizations for efficiency and reliability. Key to our variational approach is the use of line processes to identify inliers vs. outliers, as well as the presence of sharp features. We demonstrate that our method can denoise sampled piecewise-smooth surfaces for levels of noise and outliers at which previous works fall short.