Browsing by Author "Munkberg, Jacob"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Appearance-Driven Automatic 3D Model Simplification(The Eurographics Association, 2021) Hasselgren, Jon; Munkberg, Jacob; Lehtinen, Jaakko; Aittala, Miika; Laine, Samuli; Bousseau, Adrien and McGuire, MorganWe present a suite of techniques for jointly optimizing triangle meshes and shading models to match the appearance of reference scenes. This capability has a number of uses, including appearance-preserving simplification of extremely complex assets, conversion between rendering systems, and even conversion between geometric scene representations. We follow and extend the classic analysis-by-synthesis family of techniques: enabled by a highly efficient differentiable renderer and modern nonlinear optimization algorithms, our results are driven to minimize the image-space difference to the target scene when rendered in similar viewing and lighting conditions. As the only signals driving the optimization are differences in rendered images, the approach is highly general and versatile: it easily supports many different forward rendering models such as normal mapping, spatially-varying BRDFs, displacement mapping, etc. Supervision through images only is also key to the ability to easily convert between rendering systems and scene representations. We output triangle meshes with textured materials to ensure that the models render efficiently on modern graphics hardware and benefit from, e.g., hardware-accelerated rasterization, ray tracing, and filtered texture lookups. Our system is integrated in a small Python code base, and can be applied at high resolutions and on large models. We describe several use cases, including mesh decimation, level of detail generation, seamless mesh filtering and approximations of aggregate geometry.Item Neural Denoising with Layer Embeddings(The Eurographics Association and John Wiley & Sons Ltd., 2020) Munkberg, Jacob; Hasselgren, Jon; Dachsbacher, Carsten and Pharr, MattWe propose a novel approach for denoising Monte Carlo path traced images, which uses data from individual samples rather than relying on pixel aggregates. Samples are partitioned into layers, which are filtered separately, giving the network more freedom to handle outliers and complex visibility. Finally the layers are composited front-to-back using alpha blending. The system is trained end-to-end, with learned layer partitioning, filter kernels, and compositing. We obtain similar image quality as recent state-of-the-art sample based denoisers at a fraction of the computational cost and memory requirements.Item Neural Temporal Adaptive Sampling and Denoising(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hasselgren, Jon; Munkberg, Jacob; Salvi, Marco; Patney, Anjul; Lefohn, Aaron; Panozzo, Daniele and Assarsson, UlfDespite recent advances in Monte Carlo path tracing at interactive rates, denoised image sequences generated with few samples per-pixel often yield temporally unstable results and loss of high-frequency details. We present a novel adaptive rendering method that increases temporal stability and image fidelity of low sample count path tracing by distributing samples via spatio-temporal joint optimization of sampling and denoising. Adding temporal optimization to the sample predictor enables it to learn spatio-temporal sampling strategies such as placing more samples in disoccluded regions, tracking specular highlights, etc; adding temporal feedback to the denoiser boosts the effective input sample count and increases temporal stability. The temporal approach also allows us to remove the initial uniform sampling step typically present in adaptive sampling algorithms. The sample predictor and denoiser are deep neural networks that we co-train end-to-end over multiple consecutive frames. Our approach is scalable, allowing trade-off between quality and performance, and runs at near real-time rates while achieving significantly better image quality and temporal stability than previous methods.