Browsing by Author "Bethel, E. Wes"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Improving Performance of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization(The Eurographics Association, 2020) Loring, Burlen; Wolf, Mathew; Kress, James; Shudler, Sergei; Gu, Junmin; Rizzi, Silvio; Logan, Jeremy; Ferrier, Nicola; Bethel, E. Wes; Frey, Steffen and Huang, Jian and Sadlo, FilipIn an in transit setting, a parallel data producer, such as a numerical simulation, runs on one set of ranks M, while a data consumer, such as a parallel visualization application, runs on a different set of ranks N: One of the central challenges in this in transit setting is to determine the mapping of data from the set of M producer ranks to the set of N consumer ranks. This is a challenging problem for several reasons, such as the producer and consumer codes potentially having different scaling characteristics and different data models. The resulting mapping from M to N ranks can have a significant impact on aggregate application performance. In this work, we present an approach for performing this M-to-N mapping in a way that has broad applicability across a diversity of data producer and consumer applications. We evaluate its design and performance with a study that runs at high concurrency on a modern HPC platform. By leveraging design characteristics, which facilitate an ''intelligent'' mapping from M-to-N, we observe significant performance gains are possible in terms of several different metrics, including time-to-solution and amount of data moved.Item Performance Tradeoffs in Shared-memory Platform Portable Implementations of a Stencil Kernel(The Eurographics Association, 2021) Bethel, E. Wes; Heinemann, Colleen; Perciano, Talita; Larsen, Matthew and Sadlo, FilipBuilding on a significant amount of current research that examines the idea of platform-portable parallel code across different types of processor families, this work focuses on two sets of related questions. First, using a performance analysis methodology that leverages multiple metrics including hardware performance counters and elapsed time on both CPU and GPU platforms, we examine the performance differences that arise when using two common platform portable parallel programming approaches, namely OpenMP and VTK-m, for a stencil-based computation, which serves as a proxy for many different types of computations in visualization and analytics. Second, we explore the performance differences that result when using coarserand finer-grained parallelism approaches that are afforded by both OpenMP and VTK-m.