Browsing by Author "Blumenschein, Michael"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates(The Eurographics Association and John Wiley & Sons Ltd., 2020) Blumenschein, Michael; Zhang, Xuan; Pomerenke, David; Keim, Daniel A.; Fuchs, Johannes; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaThe ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions. While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with 31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification quality, and the users' confidence for two different strategies using both synthetic and real-world datasets. Our results show that, somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.Item ParSetgnostics: Quality Metrics for Parallel Sets(The Eurographics Association and John Wiley & Sons Ltd., 2021) Dennig, Frederik L.; Fischer, Maximilian T.; Blumenschein, Michael; Fuchs, Johannes; Keim, Daniel A.; Dimara, Evanthia; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWhile there are many visualization techniques for exploring numeric data, only a few work with categorical data. One prominent example is Parallel Sets, showing data frequencies instead of data points - analogous to parallel coordinates for numerical data. As nominal data does not have an intrinsic order, the design of Parallel Sets is sensitive to visual clutter due to overlaps, crossings, and subdivision of ribbons hindering readability and pattern detection. In this paper, we propose a set of quality metrics, called ParSetgnostics (Parallel Sets diagnostics), which aim to improve Parallel Sets by reducing clutter. These quality metrics quantify important properties of Parallel Sets such as overlap, orthogonality, ribbon width variance, and mutual information to optimize the category and dimension ordering. By conducting a systematic correlation analysis between the individual metrics, we ensure their distinctiveness. Further, we evaluate the clutter reduction effect of ParSetgnostics by reconstructing six datasets from previous publications using Parallel Sets measuring and comparing their respective properties. Our results show that ParSetgostics facilitates multi-dimensional analysis of categorical data by automatically providing optimized Parallel Set designs with a clutter reduction of up to 81% compared to the originally proposed Parallel Sets visualizations.Item Reordering Sets of Parallel Coordinates Plots to Highlight Differences in Clusters(The Eurographics Association, 2022) Koh, Elliot; Blumenschein, Michael; Shao, Lin; Schreck, Tobias; Bernard, Jürgen; Angelini, MarcoVisualizing high-dimensional (HD) data is a key challenge for data scientists. The importance of this challenge is to properly map data properties, e.g., patterns, outliers, and correlations, from a HD data space onto a visualization. Parallel coordinate plots (PCPs) are a common way to do this. However, a PCP visualization can be arranged in several ways by reordering its axes, which may lead to different visual representations. Many methods have been developed with the aim of evaluating the quality of reorderings of given PCP view. A high-dimensional data set can be divided into multiple classes, and being able to identify differences between the classes is important. Then, besides overlaying the groups in a single PCP, we can show the different groups in individual PCPs in a small multiple fashion. This raises the problem of jointly reordering sets of PCPs to create meaningful reorderings of the set of plots. We propose a joint reordering strategy, based on maximizing the pairwise visual difference in PCPs, such as to support their contrastive comparison. We present an implementation and an evaluation of the reordering strategy to assess the effectiveness of the method. The approach shows feasible in bringing out pairwise difference in PCP plots and hence support comparison of grouped data.Item v-plots: Designing Hybrid Charts for the Comparative Analysis of Data Distributions(The Eurographics Association and John Wiley & Sons Ltd., 2020) Blumenschein, Michael; Debbeler, Luka J.; Lages, Nadine C.; Renner, Britta; Keim, Daniel A.; El-Assady, Mennatallah; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaComparing data distributions is a core focus in descriptive statistics, and part of most data analysis processes across disciplines. In particular, comparing distributions entails numerous tasks, ranging from identifying global distribution properties, comparing aggregated statistics (e.g., mean values), to the local inspection of single cases. While various specialized visualizations have been proposed (e.g., box plots, histograms, or violin plots), they are not usually designed to support more than a few tasks, unless they are combined. In this paper, we present the v-plot designer; a technique for authoring custom hybrid charts, combining mirrored bar charts, difference encodings, and violin-style plots. v-plots are customizable and enable the simultaneous comparison of data distributions on global, local, and aggregation levels. Our system design is grounded in an expert survey that compares and evaluates 20 common visualization techniques to derive guidelines for the task-driven selection of appropriate visualizations. This knowledge externalization step allowed us to develop a guiding wizard that can tailor v-plots to individual tasks and particular distribution properties. Finally, we confirm the usefulness of our system design and the userguiding process by measuring the fitness for purpose and applicability in a second study with four domain and statistic experts.