Browsing by Author "Sessler, David"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ProBGP: Progressive Visual Analytics of Live BGP Updates(The Eurographics Association and John Wiley & Sons Ltd., 2021) Ulmer, Alex; Sessler, David; Kohlhammer, Jörn; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonThe global routing network is the backbone of the Internet. However, it is quite vulnerable to attacks that cause major disruptions or routing manipulations. Prior related works have visualized routing path changes with node link diagrams, but it requires strong domain expertise to understand if a routing change between autonomous systems is suspicious. Geographic visualization has an advantage over conventional node-link diagrams by helping uncover such suspicious routes as the user can immediately see if a path is the shortest path to the target or an unreasonable detour. In this paper, we present ProBGP, a web-based progressive approach to visually analyze BGP update routes. We created a novel progressive data processing algorithm for the geographic approximation of autonomous systems and combined it with a progressively updating visualization. While the newest log data is continuously loaded, our approach also allows querying the entire log recordings since 1999. We present the usefulness of our approach with a real use case of a major route leak from June 2019. We report on multiple interviews with domain experts throughout the development. Finally, we evaluated our algorithm quantitatively against a public peering database and qualitatively against AS network maps.Item Towards the Detection and Visual Analysis of COVID-19 Infection Clusters(The Eurographics Association, 2021) Antweiler, Dario; Sessler, David; Ginzel, Sebastian; Kohlhammer, Jörn; Vrotsou, Katerina and Bernard, JürgenA major challenge for departments of public health (DPHs) in dealing with the ongoing COVID-19 pandemic is tracing contacts in exponentially growing SARS-CoV2 infection clusters. Prevention of further disease spread requires a comprehensive registration of the connections between individuals and clusters. Due to the high number of infections with unknown origin, the healthcare analysts need to identify connected cases and clusters through accumulated epidemiological knowledge and the metadata of the infections in their database. Here we contribute a visual analytics framework to identify, assess and visualize clusters in COVID-19 contact tracing networks. Additionally, we demonstrate how graph-based machine learning methods can be used to find missing links between infection clusters and thus support the mission to get a comprehensive view on infection events. This work was developed through close collaboration with DPHs in Germany. We argue how our systems supports the identification of clusters by public health experts and discuss ongoing developments and possible extensions.