Browsing by Author "Ovsjanikov, Maks"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Complex Functional Maps: A Conformal Link Between Tangent Bundles(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Donati, Nicolas; Corman, Etienne; Melzi, Simone; Ovsjanikov, Maks; Hauser, Helwig and Alliez, PierreIn this paper, we introduce complex functional maps, which extend the functional map framework to conformal maps between tangent vector fields on surfaces. A key property of these maps is their . More specifically, we demonstrate that unlike regular functional maps that link of two manifolds, our complex functional maps establish a link between , thus permitting robust and efficient transfer of tangent vector fields. By first endowing and then exploiting the tangent bundle of each shape with a complex structure, the resulting operations become naturally orientation‐aware, thus favouring across shapes, without relying on descriptors or extra regularization. Finally, and perhaps more importantly, we demonstrate how these objects enable several practical applications within the functional map framework. We show that functional maps and their complex counterparts can be estimated jointly to promote orientation preservation, regularizing pipelines that previously suffered from orientation‐reversing symmetry errors.Item Connectivity-preserving Smooth Surface Filling with Sharp Features(The Eurographics Association, 2019) Lescoat, Thibault; Memari, Pooran; Thiery, Jean-Marc; Ovsjanikov, Maks; Boubekeur, Tamy; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonWe present a method for constructing a surface mesh filling gaps between the boundaries of multiple disconnected input components. Unlike previous works, our method pays special attention to preserving both the connectivity and large-scale geometric features of input parts, while maintaining efficiency and scalability w.r.t. mesh complexity. Starting from an implicit surface reconstruction matching the parts' boundaries, we first introduce a modified dual contouring algorithm which stitches a meshed contour to the input components while preserving their connectivity. We then show how to deform the reconstructed mesh to respect the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary. As a result, our reconstructed surface is smooth and propagates the feature lines of the input. We demonstrate on a wide variety of input shapes that our method is scalable to large input complexity and results in superior mesh quality compared to existing techniques.Item Consistent ZoomOut: Efficient Spectral Map Synchronization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Huang, Ruqi; Ren, Jing; Wonka, Peter; Ovsjanikov, Maks; Jacobson, Alec and Huang, QixingIn this paper, we propose a novel method, which we call CONSISTENT ZOOMOUT, for efficiently refining correspondences among deformable 3D shape collections, while promoting the resulting map consistency. Our formulation is closely related to a recent unidirectional spectral refinement framework, but naturally integrates map consistency constraints into the refinement. Beyond that, we show further that our formulation can be adapted to recover the underlying isometry among near-isometric shape collections with a theoretical guarantee, which is absent in the other spectral map synchronization frameworks. We demonstrate that our method improves the accuracy compared to the competing methods when synchronizing correspondences in both near-isometric and heterogeneous shape collections, but also significantly outperforms the baselines in terms of map consistency.Item Inverse Computational Spectral Geometry(The Eurographics Association, 2021) Rodolà, Emanuele; Melzi, Simone; Cosmo, Luca; Bronstein, Michael; Ovsjanikov, Maks; O'Sullivan, Carol and Schmalstieg, DieterIn the last decades, geometry processing has attracted a growing interest thanks to the wide availability of new devices and software that make 3D digital data available and manipulable to everyone. Typical issues that are faced by geometry processing algorithms include the variety of discrete representations for 3D data (point clouds, polygonal or tet-meshes and voxels), or the type of deformation this data may undergo. Powerful approaches to address these issues come from looking at the spectral decomposition of canonical differential operators, such as the Laplacian, which provides a rich, informative, robust, and invariant representation of the 3D objects. Reasoning about spectral quantities is at the core of spectral geometry, which has enabled unprecedented performance in many tasks of computer graphics (e.g., shape matching with functional maps, shape retrieval, compression, and texture transfer), as well as contributing in opening new directions of research. The focus of this tutorial is on inverse computational spectral geometry. We will offer a different perspective on spectral geometric techniques, supported by recent successful methods in the graphics and 3D vision communities, as well as older, but notoriously overlooked results. Here, the interest shifts from studying the “forward” path typical of spectral geometry pipelines (e.g., computing Laplacian eigenvalues and eigenvectors of a given shape) to studying the inverse path (e.g., recovering a shape from given Laplacian eigenvalues, like in the classical “hearing the shape of the drum” problem). As is emblematic of inverse problems, the ill-posed nature of the reverse direction requires additional effort, but the benefits can be quite considerable as showcased on several challenging tasks in graphics and geometry processing. The purpose of the tutorial is to overview the foundations and the current state of the art on inverse computational spectral geometry, to highlight the main benefits of inverse spectral pipelines, as well as their current limitations and future developments in the context of computer graphics. The tutorial is aimed at a wide audience with a basic understanding of geometry processing, and will be accessible and interesting to students, researchers and practitioners from both the academia and the industry.Item Learning Spectral Unions of Partial Deformable 3D Shapes(The Eurographics Association and John Wiley & Sons Ltd., 2022) Moschella, Luca; Melzi, Simone; Cosmo, Luca; Maggioli, Filippo; Litany, Or; Ovsjanikov, Maks; Guibas, Leonidas; Rodolà, Emanuele; Chaine, Raphaëlle; Kim, Min H.Spectral geometric methods have brought revolutionary changes to the field of geometry processing. Of particular interest is the study of the Laplacian spectrum as a compact, isometry and permutation-invariant representation of a shape. Some recent works show how the intrinsic geometry of a full shape can be recovered from its spectrum, but there are approaches that consider the more challenging problem of recovering the geometry from the spectral information of partial shapes. In this paper, we propose a possible way to fill this gap. We introduce a learning-based method to estimate the Laplacian spectrum of the union of partial non-rigid 3D shapes, without actually computing the 3D geometry of the union or any correspondence between those partial shapes. We do so by operating purely in the spectral domain and by defining the union operation between short sequences of eigenvalues. We show that the approximated union spectrum can be used as-is to reconstruct the complete geometry [MRC*19], perform region localization on a template [RTO*19] and retrieve shapes from a database, generalizing ShapeDNA [RWP06] to work with partialities. Working with eigenvalues allows us to deal with unknown correspondence, different sampling, and different discretizations (point clouds and meshes alike), making this operation especially robust and general. Our approach is data-driven and can generalize to isometric and non-isometric deformations of the surface, as long as these stay within the same semantic class (e.g., human bodies or horses), as well as to partiality artifacts not seen at training time.Item Non‐Isometric Shape Matching via Functional Maps on Landmark‐Adapted Bases(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Panine, Mikhail; Kirgo, Maxime; Ovsjanikov, Maks; Hauser, Helwig and Alliez, PierreWe propose a principled approach for non‐isometric landmark‐preserving non‐rigid shape matching. Our method is based on the functional map framework, but rather than promoting isometries we focus on near‐conformal maps that preserve landmarks exactly. We achieve this, first, by introducing a novel landmark‐adapted basis using an intrinsic Dirichlet‐Steklov eigenproblem. Second, we establish the functional decomposition of conformal maps expressed in this basis. Finally, we formulate a conformally‐invariant energy that promotes high‐quality landmark‐preserving maps, and show how it can be optimized via a variant of the recently proposed ZoomOut method that we extend to our setting. Our method is descriptor‐free, efficient and robust to significant mesh variability. We evaluate our approach on a range of benchmark datasets and demonstrate state‐of‐the‐art performance on non‐isometric benchmarks and near state‐of‐the‐art performance on isometric ones.Item Scalable and Efficient Functional Map Computations on Dense Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Magnet, Robin; Ovsjanikov, Maks; Myszkowski, Karol; Niessner, MatthiasWe propose a new scalable version of the functional map pipeline that allows to efficiently compute correspondences between potentially very dense meshes. Unlike existing approaches that process dense meshes by relying on ad-hoc mesh simplification, we establish an integrated end-to-end pipeline with theoretical approximation analysis. In particular, our method overcomes the computational burden of both computing the basis, as well the functional and pointwise correspondence computation by approximating the functional spaces and the functional map itself. Errors in the approximations are controlled by theoretical upper bounds assessing the range of applicability of our pipeline.With this construction in hand, we propose a scalable practical algorithm and demonstrate results on dense meshes, which approximate those obtained by standard functional map algorithms at the fraction of the computation time. Moreover, our approach outperforms the standard acceleration procedures by a large margin, leading to accurate results even in challenging cases.Item Structured Regularization of Functional Map Computations(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ren, Jing; Panine, Mikhail; Wonka, Peter; Ovsjanikov, Maks; Bommes, David and Huang, HuiWe consider the problem of non-rigid shape matching using the functional map framework. Specifically, we analyze a commonly used approach for regularizing functional maps, which consists in penalizing the failure of the unknown map to commute with the Laplace-Beltrami operators on the source and target shapes. We show that this approach has certain undesirable fundamental theoretical limitations, and can be undefined even for trivial maps in the smooth setting. Instead we propose a novel, theoretically well-justified approach for regularizing functional maps, by using the notion of the resolvent of the Laplacian operator. In addition, we provide a natural one-parameter family of regularizers, that can be easily tuned depending on the expected approximate isometry of the input shape pair. We show on a wide range of shape correspondence scenarios that our novel regularization leads to an improvement in the quality of the estimated functional, and ultimately pointwise correspondences before and after commonly-used refinement techniques.Item Wavelet‐based Heat Kernel Derivatives: Towards Informative Localized Shape Analysis(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Kirgo, Maxime; Melzi, Simone; Patanè, Giuseppe; Rodolà, Emanuele; Ovsjanikov, Maks; Benes, Bedrich and Hauser, HelwigIn this paper, we propose a new construction for the Mexican hat wavelets on shapes with applications to partial shape matching. Our approach takes its main inspiration from the well‐established methodology of diffusion wavelets. This novel construction allows us to rapidly compute a multi‐scale family of Mexican hat wavelet functions, by approximating the derivative of the heat kernel. We demonstrate that this leads to a family of functions that inherit many attractive properties of the heat kernel (e.g. local support, ability to recover isometries from a single point, efficient computation). Due to its natural ability to encode high‐frequency details on a shape, the proposed method reconstructs and transfers ‐functions more accurately than the Laplace‐Beltrami eigenfunction basis and other related bases. Finally, we apply our method to the challenging problems of partial and large‐scale shape matching. An extensive comparison to the state‐of‐the‐art shows that it is comparable in performance, while both simpler and much faster than competing approaches.