Browsing by Author "Deng, Zhigang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Hexahedral Meshing With Varying Element Sizes(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Xu, Kaoji; Gao, Xifeng; Deng, Zhigang; Chen, Guoning; Chen, Min and Zhang, Hao (Richard)Hexahedral (or Hex‐) meshes are preferred in a number of scientific and engineering simulations and analyses due to their desired numerical properties. Recent state‐of‐the‐art techniques can generate high‐quality hex‐meshes. However, they typically produce hex‐meshes with uniform element sizes and thus may fail to preserve small‐scale features on the boundary surface. In this work, we present a new framework that enables users to generate hex‐meshes with varying element sizes so that small features will be filled with smaller and denser elements, while the transition from smaller elements to larger ones is smooth, compared to the octree‐based approach. This is achieved by first detecting regions of interest (ROIs) of small‐scale features. These ROIs are then magnified using the as‐rigid‐as‐possible deformation with either an automatically determined or a user‐specified scale factor. A hex‐mesh is then generated from the deformed mesh using existing approaches that produce hex‐meshes with uniform‐sized elements. This initial hex‐mesh is then mapped back to the original volume before magnification to adjust the element sizes in those ROIs. We have applied this framework to a variety of man‐made and natural models to demonstrate its effectiveness.Hexahedral (or Hex‐) meshes are preferred in a number of scientific and engineering simulations and analyses due to their desired numerical properties. Recent state‐of‐the‐art techniques can generate high‐quality hex‐meshes. However, they typically produce hex‐meshes with uniform element sizes and thus may fail to preserve small‐scale features on the boundary surface. In this work, we present a new framework that enables users to generate hex‐meshes with varying element sizes so that small features will be filled with smaller and denser elements, while the transition from smaller elements to larger ones is smooth, compared to the octree‐based approach.Item Online Global Non-rigid Registration for 3D Object Reconstruction Using Consumer-level Depth Cameras(The Eurographics Association and John Wiley & Sons Ltd., 2018) Xu, Jiamin; Xu, Weiwei; Yang, Yin; Deng, Zhigang; Bao, Hujun; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesWe investigate how to obtain high-quality 360-degree 3D reconstructions of small objects using consumer-level depth cameras. For many homeware objects such as shoes and toys with dimensions around 0.06 - 0:4 meters, their whole projections, in the hand-held scanning process, occupy fewer than 20% pixels of the camera's image. We observe that existing 3D reconstruction algorithms like KinectFusion and other similar methods often fail in such cases even under the close-range depth setting. To achieve high-quality 3D object reconstruction results at this scale, our algorithm relies on an online global non-rigid registration, where embedded deformation graph is employed to handle the drifting of camera tracking and the possible nonlinear distortion in the captured depth data. We perform an automatic target object extraction from RGBD frames to remove the unrelated depth data so that the registration algorithm can focus on minimizing the geometric and photogrammetric distances of the RGBD data of target objects. Our algorithm is implemented using CUDA for a fast non-rigid registration. The experimental results show that the proposed method can reconstruct high-quality 3D shapes of various small objects with textures.Item Pacific Graphics 2023 - Short Papers and Posters: Frontmatter(The Eurographics Association, 2023) Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Item A Survey on Visual Traffic Simulation: Models, Evaluations, and Applications in Autonomous Driving(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Chao, Qianwen; Bi, Huikun; Li, Weizi; Mao, Tianlu; Wang, Zhaoqi; Lin, Ming C.; Deng, Zhigang; Benes, Bedrich and Hauser, HelwigVirtualized traffic via various simulation models and real‐world traffic data are promising approaches to reconstruct detailed traffic flows. A variety of applications can benefit from the virtual traffic, including, but not limited to, video games, virtual reality, traffic engineering and autonomous driving. In this survey, we provide a comprehensive review on the state‐of‐the‐art techniques for traffic simulation and animation. We start with a discussion on three classes of traffic simulation models applied at different levels of detail. Then, we introduce various data‐driven animation techniques, including existing data collection methods, and the validation and evaluation of simulated traffic flows. Next, we discuss how traffic simulations can benefit the training and testing of autonomous vehicles. Finally, we discuss the current states of traffic simulation and animation and suggest future research directions.