Browsing by Author "Georgiev, Iliyan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correlation-Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms(The Eurographics Association and John Wiley & Sons Ltd., 2021) Grittmann, Pascal; Georgiev, Iliyan; Slusallek, Philipp; Mitra, Niloy and Viola, IvanCombining diverse sampling techniques via multiple importance sampling (MIS) is key to achieving robustness in modern Monte Carlo light transport simulation. Many such methods additionally employ correlated path sampling to boost efficiency. Photon mapping, bidirectional path tracing, and path-reuse algorithms construct sets of paths that share a common prefix. This correlation is ignored by classical MIS heuristics, which can result in poor technique combination and noisy images.We propose a practical and robust solution to that problem. Our idea is to incorporate correlation knowledge into the balance heuristic, based on known path densities that are already required for MIS. This correlation-aware heuristic can achieve considerably lower error than the balance heuristic, while avoiding computational and memory overhead.Item Practical Product Sampling for Single Scattering in Media(The Eurographics Association, 2021) Villeneuve, Keven; Gruson, Adrien; Georgiev, Iliyan; Nowrouzezahrai, Derek; Bousseau, Adrien and McGuire, MorganEfficient Monte-Carlo estimation of volumetric single scattering remains challenging due to various sources of variance, including transmittance, phase-function anisotropy, geometric cosine foreshortening, and squared-distance fall-off. We propose several complementary techniques to importance sample each of these terms and their product. First, we introduce an extension to equi-angular sampling to analytically account for the foreshortening at point-normal emitters. We then include transmittance and phase function via Taylor-series expansion and/or warp composition. Scaling to complex mesh emitters is achieved through an adaptive tree-splitting scheme. We show improved performance over state-of-the-art baselines in a diversity of scenarios.Item Residual Path Integrals for Re-rendering(The Eurographics Association and John Wiley & Sons Ltd., 2024) Xu, Bing; Li, Tzu-Mao; Georgiev, Iliyan; Hedstrom, Trevor; Ramamoorthi, Ravi; Garces, Elena; Haines, EricConventional rendering techniques are primarily designed and optimized for single-frame rendering. In practical applications, such as scene editing and animation rendering, users frequently encounter scenes where only a small portion is modified between consecutive frames. In this paper, we develop a novel approach to incremental re-rendering of scenes with dynamic objects, where only a small part of a scene moves from one frame to the next. We formulate the difference (or residual) in the image between two frames as a (correlated) light-transport integral which we call the residual path integral. Efficient numerical solution of this integral then involves (1) devising importance sampling strategies to focus on paths with non-zero residual-transport contributions and (2) choosing appropriate mappings between the native path spaces of the two frames. We introduce a set of path importance sampling strategies that trace from the moving object(s) which are the sources of residual energy. We explore path mapping strategies that generalize those from gradient-domain path tracing to our importance sampling techniques specially for dynamic scenes. Additionally, our formulation can be applied to material editing as a simpler special case. We demonstrate speed-ups over previous correlated sampling of path differences and over rendering the new frame independently. Our formulation brings new insights into the re-rendering problem and paves the way for devising new types of sampling techniques and path mappings with different trade-offs.Item Single-pass Stratified Importance Resampling(The Eurographics Association and John Wiley & Sons Ltd., 2022) Ciklabakkal, Ege; Gruson, Adrien; Georgiev, Iliyan; Nowrouzezahrai, Derek; Hachisuka, Toshiya; Ghosh, Abhijeet; Wei, Li-YiResampling is the process of selecting from a set of candidate samples to achieve a distribution (approximately) proportional to a desired target. Recent work has revisited its application to Monte Carlo integration, yielding powerful and practical importance sampling methods. One drawback of existing resampling methods is that they cannot generate stratified samples. We propose two complementary techniques to achieve efficient stratified resampling. We first introduce bidirectional CDF sampling which yields the same result as conventional inverse CDF sampling but in a single pass over the candidates, without needing to store them, similarly to reservoir sampling. We then order the candidates along a space-filling curve to ensure that stratified CDF sampling of candidate indices yields stratified samples in the integration domain. We showcase our method on various resampling-based rendering problems.