Browsing by Author "Johnson, Chris R."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Feng; Marshak, Nathan; Usher, Will; Burstedde, Carsten; Knoll, Aaron; Heister, Timo; Johnson, Chris R.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaAdaptive mesh refinement (AMR) techniques allow for representing a simulation's computation domain in an adaptive fashion. Although these techniques have found widespread adoption in high-performance computing simulations, visualizing their data output interactively and without cracks or artifacts remains challenging. In this paper, we present an efficient solution for direct volume rendering and hybrid implicit isosurface ray tracing of tree-based AMR (TB-AMR) data. We propose a novel reconstruction strategy, Generalized Trilinear Interpolation (GTI), to interpolate across AMR level boundaries without cracks or discontinuities in the surface normal. We employ a general sparse octree structure supporting a wide range of AMR data, and use it to accelerate volume rendering, hybrid implicit isosurface rendering and value queries. We demonstrate that our approach achieves artifact-free isosurface and volume rendering and provides higher quality output images compared to existing methods at interactive rendering rates.Item Evaluation of PyTorch as a Data-Parallel Programming API for GPU Volume Rendering(The Eurographics Association, 2021) Marshak, Nathan X.; Grosset, A. V. Pascal; Knoll, Aaron; Ahrens, James; Johnson, Chris R.; Larsen, Matthew and Sadlo, FilipData-parallel programming (DPP) has attracted considerable interest from the visualization community, fostering major software initiatives such as VTK-m. However, there has been relatively little recent investigation of data-parallel APIs in higherlevel languages such as Python, which could help developers sidestep the need for low-level application programming in C++ and CUDA. Moreover, machine learning frameworks exposing data-parallel primitives, such as PyTorch and TensorFlow, have exploded in popularity, making them attractive platforms for parallel visualization and data analysis. In this work, we benchmark data-parallel primitives in PyTorch, and investigate its application to GPU volume rendering using two distinct DPP formulations: a parallel scan and reduce over the entire volume, and repeated application of data-parallel operators to an array of rays. We find that most relevant DPP primitives exhibit performance similar to a native CUDA library. However, our volume rendering implementation reveals that PyTorch is limited in expressiveness when compared to other DPP APIs. Furthermore, while render times are sufficient for an early ''proof of concept'', memory usage acutely limits scalability.Item FunMC^2: A Filter for Uncertainty Visualization of Marching Cubes on Multi-Core Devices(The Eurographics Association, 2023) Wang, Zhe; Athawale, Tushar M.; Moreland, Kenneth; Chen, Jieyang; Johnson, Chris R.; Pugmire, David; Bujack, Roxana; Pugmire, David; Reina, GuidoVisualization is an important tool for scientists to extract understanding from complex scientific data. Scientists need to understand the uncertainty inherent in all scientific data in order to interpret the data correctly. Uncertainty visualization has been an active and growing area of research to address this challenge. Algorithms for uncertainty visualization can be expensive, and research efforts have been focused mainly on structured grid types. Further, support for uncertainty visualization in production tools is limited. In this paper, we adapt an algorithm for computing key metrics for visualizing uncertainty in Marching Cubes (MC) to multi-core devices and present the design, implementation, and evaluation for a Filter for uncertainty visualization of Marching Cubes on Multi-Core devices (FunMC2). FunMC2 accelerates the uncertainty visualization of MC significantly, and it is portable across multi-core CPUs and GPUs. Evaluation results show that FunMC2 based on OpenMP runs around 11× to 41× faster on multi-core CPUs than the corresponding serial version using one CPU core. FunMC2 based on a single GPU is around 5× to 9× faster than FunMC2 running by OpenMP. Moreover, FunMC2 is flexible enough to process ensemble data with both structured and unstructured mesh types. Furthermore, we demonstrate that FunMC2 can be seamlessly integrated as a plugin into ParaView, a production visualization tool for post-processing.Item Ray Tracing Generalized Tube Primitives: Method and Applications(The Eurographics Association and John Wiley & Sons Ltd., 2019) Han, Mengjiao; Wald, Ingo; Usher, Will; Wu, Qi; Wang, Feng; Pascucci, Valerio; Hansen, Charles D.; Johnson, Chris R.; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines, pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality rendering, with low memory overhead.Item Ray Tracing Spherical Harmonics Glyphs(The Eurographics Association, 2023) Peters, Christoph; Patel, Tark; Usher, Will; Johnson, Chris R.; Guthe, Michael; Grosch, ThorstenSpherical harmonics glyphs are an established way to visualize high angular resolution diffusion imaging data. Starting from a unit sphere, each point on the surface is scaled according to the value of a linear combination of spherical harmonics basis functions. The resulting glyph visualizes an orientation distribution function. We present an efficient method to render these glyphs using ray tracing. Our method constructs a polynomial whose roots correspond to ray-glyph intersections. This polynomial has degree 2k+2 for spherical harmonics bands 0;2; : : : ; k. We then find all intersections in an efficient and numerically stable fashion through polynomial root finding. Our formulation also gives rise to a simple formula for normal vectors of the glyph. Additionally, we compute a nearly exact axis-aligned bounding box to make ray tracing of these glyphs even more efficient. Since our method finds all intersections for arbitrary rays, it lets us perform sophisticated shading and uncertainty visualization. Compared to prior work, it is faster, more flexible and more accurate.Item Scalable In Situ Computation of Lagrangian Representations via Local Flow Maps(The Eurographics Association, 2021) Sane, Sudhanshu; Yenpure, Abhishek; Bujack, Roxana; Larsen, Matthew; Moreland, Kenneth; Garth, Christoph; Johnson, Chris R.; Childs, Hank; Larsen, Matthew and Sadlo, FilipIn situ computation of Lagrangian flow maps to enable post hoc time-varying vector field analysis has recently become an active area of research. However, the current literature is largely limited to theoretical settings and lacks a solution to address scalability of the technique in distributed memory. To improve scalability, we propose and evaluate the benefits and limitations of a simple, yet novel, performance optimization. Our proposed optimization is a communication-free model resulting in local Lagrangian flow maps, requiring no message passing or synchronization between processes, intrinsically improving scalability, and thereby reducing overall execution time and alleviating the encumbrance placed on simulation codes from communication overheads. To evaluate our approach, we computed Lagrangian flow maps for four time-varying simulation vector fields and investigated how execution time and reconstruction accuracy are impacted by the number of GPUs per compute node, the total number of compute nodes, particles per rank, and storage intervals. Our study consisted of experiments computing Lagrangian flow maps with up to 67M particle trajectories over 500 cycles and used as many as 2048 GPUs across 512 compute nodes. In all, our study contributes an evaluation of a communication-free model as well as a scalability study of computing distributed Lagrangian flow maps at scale using in situ infrastructure on a modern supercomputer.Item Visualization of Uncertain Multivariate Data via Feature Confidence Level-Sets(The Eurographics Association, 2021) Sane, Sudhanshu; Athawale, Tushar M.; Johnson, Chris R.; Agus, Marco and Garth, Christoph and Kerren, AndreasRecent advancements in multivariate data visualization have opened new research opportunities for the visualization community. In this paper, we propose an uncertain multivariate data visualization technique called feature confidence level-sets. Conceptually, feature level-sets refer to level-sets of multivariate data. Our proposed technique extends the existing idea of univariate confidence isosurfaces to multivariate feature level-sets. Feature confidence level-sets are computed by considering the trait for a specific feature, a confidence interval, and the distribution of data at each grid point in the domain. Using uncertain multivariate data sets, we demonstrate the utility of the technique to visualize regions with uncertainty in relation to the specific trait or feature, and the ability of the technique to provide secondary feature structure visualization based on uncertainty.