Browsing by Author "Cibulski, Lena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item PAVED: Pareto Front Visualization for Engineering Design(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cibulski, Lena; Mitterhofer, Hubert; May, Thorsten; Kohlhammer, Jörn; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDesign problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto-optimal solutions, thus informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to support engineers in applying their expertise and subjective preferences for selection of the most-preferred solution. We provide a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi-criteria alternatives. We reflect on our user-centered design process that included iterative refinement with real data in close collaboration with a domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a real-world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting multi-criteria optimization problems in engineering design or alternative domains.Item RankASco: A Visual Analytics Approach to Leverage Attribute-Based User Preferences for Item Rankings(The Eurographics Association, 2022) Schmid, Jenny; Cibulski, Lena; Hazwani, Ibrahim Al; Bernard, Jürgen; Bernard, Jürgen; Angelini, MarcoItem rankings are useful when a decision needs to be made, especially if there are multiple attributes to be considered. However, existing tools either do not support both categorical and numerical attributes, require programming expertise for expressing preferences on attributes, do not offer instant feedback, or lack flexibility in expressing various types of user preferences. In this work, we present RankASco: a human-centered visual analytics approach that supports the interactive and visual creation of rankings. RankASco leverages a series of visual interfaces, enabling broad user groups to a) select attributes of interest, b) express preferences on attribute scorings based on different mental models, and c) analyze and refine item ranking results.