Browsing by Author "Guthe, Michael"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Parallel Globally Consistent Normal Orientation of Raw Unorganized Point Clouds(The Eurographics Association and John Wiley & Sons Ltd., 2019) Jakob, Johannes; Buchenau, Christoph; Guthe, Michael; Bommes, David and Huang, HuiA mandatory component for many point set algorithms is the availability of consistently oriented vertex-normals (e.g. for surface reconstruction, feature detection, visualization). Previous orientation methods on meshes or raw point clouds do not consider a global context, are often based on unrealistic assumptions, or have extremely long computation times, making them unusable on real-world data. We present a novel massively parallelized method to compute globally consistent oriented point normals for raw and unsorted point clouds. Built on the idea of graph-based energy optimization, we create a complete kNN-graph over the entire point cloud. A new weighted similarity criterion encodes the graph-energy. To orient normals in a globally consistent way we perform a highly parallel greedy edge collapse, which merges similar parts of the graph and orients them consistently. We compare our method to current state-of-the-art approaches and achieve speedups of up to two orders of magnitude. The achieved quality of normal orientation is on par or better than existing solutions, especially for real-world noisy 3D scanned data.Item A Survey on Bounding Volume Hierarchies for Ray Tracing(The Eurographics Association and John Wiley & Sons Ltd., 2021) Meister, Daniel; Ogaki, Shinji; Benthin, Carsten; Doyle, Michael J.; Guthe, Michael; Bittner, Jirí; Bühler, Katja and Rushmeier, HollyRay tracing is an inherent part of photorealistic image synthesis algorithms. The problem of ray tracing is to find the nearest intersection with a given ray and scene. Although this geometric operation is relatively simple, in practice, we have to evaluate billions of such operations as the scene consists of millions of primitives, and the image synthesis algorithms require a high number of samples to provide a plausible result. Thus, scene primitives are commonly arranged in spatial data structures to accelerate the search. In the last two decades, the bounding volume hierarchy (BVH) has become the de facto standard acceleration data structure for ray tracing-based rendering algorithms in offline and recently also in real-time applications. In this report, we review the basic principles of bounding volume hierarchies as well as advanced state of the art methods with a focus on the construction and traversal. Furthermore, we discuss industrial frameworks, specialized hardware architectures, other applications of bounding volume hierarchies, best practices, and related open problems.