Browsing by Author "Echevarria, Jose"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Automatic Vector Caricature via Face Parametrization(The Eurographics Association, 2023) Madono, Koki; Hold-Geoffroy, Yannick; Li, Yijun; Ito, Daichi; Echevarria, Jose; Smith, Cameron; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Automatic caricature generation is a challenging task that aims to emphasize the subject's facial characteristics while preserving its identity. Due to the complexity of the task, caricatures could exclusively be performed by a trained artist. Recent developments in deep learning have achieved promising results in capturing artistic styles. Despite the success, current methods still struggle to accurately capture the whimsical aspect of caricatures while preserving identity. In this work, we propose Parametric Caricature, the first parametric-based caricature generation that yields vectorized and animatable caricatures. We devise several hundred parameters to encode facial traits, which our method directly predicts instead of estimating the raster caricature like previous methods. To guide the attention of the method, we segment the different parts of the face and retrieve the most similar parts from an artist-made database of caricatures. Our method proposes visually appealing caricatures more adapted to use as avatars than existing methods, as demonstrated by our user study.Item Intrinsic Light Field Images(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Garces, Elena; Echevarria, Jose I.; Zhang, Wen; Wu, Hongzhi; Zhou, Kun; Gutierrez, Diego; Chen, Min and Zhang, Hao (Richard)We present a method to automatically decompose a light field into its intrinsic shading and albedo components. Contrary to previous work targeted to two‐dimensional (2D) single images and videos, a light field is a 4D structure that captures non‐integrated incoming radiance over a discrete angular domain. This higher dimensionality of the problem renders previous state‐of‐the‐art algorithms impractical either due to their cost of processing a single 2D slice, or their inability to enforce proper coherence in additional dimensions. We propose a new decomposition algorithm that jointly optimizes the whole light field data for proper angular coherence. For efficiency, we extend Retinex theory, working on the gradient domain, where new albedo and occlusion terms are introduced. Results show that our method provides 4D intrinsic decompositions difficult to achieve with previous state‐of‐the‐art algorithms. We further provide a comprehensive analysis and comparisons with existing intrinsic image/video decomposition methods on light field images.We present a method to automatically decompose a into its intrinsic shading and albedo components. Contrary to previous work targeted to two‐dimensional (2D) single images and videos, a light field is a 4D structure that captures non‐integrated incoming radiance over a discrete angular domain. This higher dimensionality of the problem renders previous state‐of‐the‐art algorithms impractical either due to their cost of processing a single 2D slice, or their inability to enforce proper coherence in additional dimensions. We propose a new decomposition algorithm that jointly optimizes the whole light field data for proper angular coherence.Item Sketching and Layering Graffiti Primitives(The Eurographics Association, 2019) Berio, Daniel; Asente, Paul; Echevarria, Jose; Leymarie, Frederic Fol; Kaplan, Craig S. and Forbes, Angus and DiVerdi, StephenWe present a variant of the skeletal strokes algorithm aimed at mimicking the appearance of hand made graffiti art. It includes a unique fold-culling process that stylizes folds rather than eliminating them. We demonstrate how the stroke structure can be exploited to generate non-global layering and self-overlap effects like the ones that are typically seen in graffiti art and other related art forms like traditional calligraphy. The method produces vector output with no artificial artwork splits, patches or masks to render the non-global layering; each path of the vector output is part of the desired outline. The method lets users interactively generate a wide variety of stylised outputs.