Browsing by Author "Cherchi, Gianmarco"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item A Computational Tool for the Analysis of 3D Bending-active Structures Based on the Dynamic Relaxation Method(The Eurographics Association, 2022) Manolas, Iason; Laccone, Francesco; Cherchi, Gianmarco; Malomo, Luigi; Cignoni, Paolo; Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, RiccardoThe use of elastic deformation of straight or flat structural components for achieving complex 3D shapes has acquired attention from recent computational design works, particularly in architectural geometry. The so-called bending-active structures are built by deforming and restraining the components mutually to form a stable configuration. While the manufacturing of components from flat raw material and their assembly are simple and inexpensive, the complexity lies in the design phase, in which computational tools are required to predict the deformation and forces under a prescribed form-finding load or displacement. Currently, there is a scarcity of open and efficient tools that hinder the design of bending-active structures. This paper proposes and validates an open-source computational tool for predicting the static equilibrium of general bending-active structures in the form of a network of elements using the dynamic relaxation method. We apply our tool to various real-world examples and compare the results to a commercial FEM solver. The proposed tool shows accuracy and good time performance, making it a significant addition to the available open-source structural engineering toolkit.Item Design and Implementation of a Visualization Tool for the in-depth Analysis of the Domestic Electricity Consumption(The Eurographics Association, 2019) Merlin, Gabriele; Ortu, Daniele; Cherchi, Gianmarco; Scateni, Riccardo; Agus, Marco and Corsini, Massimiliano and Pintus, RuggeroIn this poster, we present a visualization tool for the in-depth analysis of domestic electricity consumption. The web-interface allows users to visualize their electricity consumption, compare them with their own records or with the means of selected communities.Item HexBox: Interactive Box Modeling of Hexahedral Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zoccheddu, Francesco; Gobbetti, Enrico; Livesu, Marco; Pietroni, Nico; Cherchi, Gianmarco; Memari, Pooran; Solomon, JustinWe introduce HexBox, an intuitive modeling method and interactive tool for creating and editing hexahedral meshes. Hexbox brings the major and widely validated surface modeling paradigm of surface box modeling into the world of hex meshing. The main idea is to allow the user to box-model a volumetric mesh by primarily modifying its surface through a set of topological and geometric operations. We support, in particular, local and global subdivision, various instantiations of extrusion, removal, and cloning of elements, the creation of non-conformal or conformal grids, as well as shape modifications through vertex positioning, including manual editing, automatic smoothing, or, eventually, projection on an externally-provided target surface. At the core of the efficient implementation of the method is the coherent maintenance, at all steps, of two parallel data structures: a hexahedral mesh representing the topology and geometry of the currently modeled shape, and a directed acyclic graph that connects operation nodes to the affected mesh hexahedra. Operations are realized by exploiting recent advancements in gridbased meshing, such as mixing of 3-refinement, 2-refinement, and face-refinement, and using templated topological bridges to enforce on-the-fly mesh conformity across pairs of adjacent elements. A direct manipulation user interface lets users control all operations. The effectiveness of our tool, released as open source to the community, is demonstrated by modeling several complex shapes hard to realize with competing tools and techniques.Item ProtoSketchAR: Prototyping in Augmented Reality via Sketchings(The Eurographics Association, 2021) Arriu, Simone; Cherchi, Gianmarco; Spano, Lucio Davide; Frosini, Patrizio and Giorgi, Daniela and Melzi, Simone and Rodolà , EmanuelePrototyping is a widely used technique in the early stages of system design, and it is an essential part of a new product development process. During this phase, designers identify the main functionalities, concepts and contents of the system without creating a fully functional system. This paper aims to discuss the development of ProtoSketchAR, a tool enabling Augmented Reality (AR) prototyping by sketching. The application has different interaction modes, depending on the performed functionality. Basically, it is possible to create 2D/3D sketches to be placed in the real environment and to manipulate them. These functionalities allow the creation of virtual elements that can be used to prototype screens of AR applications. The application is web-based so that it can be run on any device with a compatible AR browser, regardless of the operating system used.Item The Py3DViewer Project: A Python Library for fast Prototyping in Geometry Processing(The Eurographics Association, 2019) Cherchi, Gianmarco; Pitzalis, Luca; Frongia, Giovanni Laerte; Scateni, Riccardo; Agus, Marco and Corsini, Massimiliano and Pintus, RuggeroFast research and prototyping, nowadays, is shifting towards languages that allow interactive execution and quick changes. Python is very widely used for rapid prototyping. We introduce Py3DViewer, a new Python library that allows researchers to quickly prototype geometry processing algorithms by interactively editing and viewing meshes. Polygonal and polyhedral meshes are both supported. The library is designed to be used in conjunction with Jupyter environments, which allow interactive Python code execution and data visualization in a browser, thus opening up the possibility of viewing a mesh while editing the underlying geometry and topology.Item Smart Tools and Applications in Graphics - Eurographics Italian Chapter Conference: Frontmatter(The Eurographics Association, 2022) Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, Riccardo; Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, RiccardoItem VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base Domains(The Eurographics Association and John Wiley & Sons Ltd., 2023) Cherchi, Gianmarco; Livesu, Marco; Memari, Pooran; Solomon, JustinCorrespondences between geometric domains (mappings) are ubiquitous in computer graphics and engineering, both for a variety of downstream applications and as core building blocks for higher level algorithms. In particular, mapping a shape to a convex or star-shaped domain with simple geometry is a fundamental module in existing pipelines for mesh generation, solid texturing, generation of shape correspondences, advanced manufacturing etc. For the case of surfaces, computing such a mapping with guarantees of injectivity is a solved problem. Conversely, robust algorithms for the generation of injective volume mappings to simple polytopes are yet to be found, making this a fundamental open problem in volume mesh processing. VOLMAP is a large scale benchmark aimed to support ongoing research in volume mapping algorithms. The dataset contains 4.7K tetrahedral meshes, whose boundary vertices are mapped to a variety of simple domains, either convex or star-shaped. This data constitutes the input for candidate algorithms, which are then required to position interior vertices in the domain to obtain a volume map. Overall, this yields more than 22K alternative test cases. VOLMAP also comprises tools to process this data, analyze the resulting maps, and extend the dataset with new meshes, boundary maps and base domains. This article provides a brief overview of the field, discussing its importance and the lack of effective techniques. We then introduce both the dataset and its major features. An example of comparative analysis between two existing methods is also present.Item Working with Volumetric Meshes in a Game Engine: a Unity Prototype(The Eurographics Association, 2020) Pitzalis, Luca; Cherchi, Gianmarco; Scateni, Riccardo; Spano, Lucio Davide; Biasotti, Silvia and Pintus, Ruggero and Berretti, StefanoVolumetric meshes are useful assets in many different research and application fields, like physical simulations, FEM or IGA. In the last decade, the Computer Graphics community dedicated a lot of effort in studying and developing new algorithms for the creation, manipulation, and visualization of this family of meshes. In the meantime, Game Development became a relevant field of application for CG practitioners entangled with AR and VR techniques. In this work, we position ourselves at the confluence of these two broad research and development paths. We introduce a custom data structure aiming at using volumetric meshes in Unity. To this purpose, we combine gaming techniques and interactions with typical operations of volumetric meshes. Besides this, to make the researcher experience more realistic, we also introduce features to manipulate volumetric meshes for their projects in an immersive environment using VR techniques. We think this feature can be useful in developing tools for 3D Sculpting or Digital Fabrication.