EG 2024 - Posters
Permanent URI for this collection
Browse
Browsing EG 2024 - Posters by Subject "based models"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dense 3D Gaussian Splatting Initialization for Sparse Image Data(The Eurographics Association, 2024) Seibt, Simon; Chang, Thomas Vincent Siu-Lung; von Rymon Lipinski, Bartosz ; Latoschik, Marc Erich; Liu, Lingjie; Averkiou, MelinosThis paper presents advancements in novel-view synthesis with 3D Gaussian Splatting (3DGS) using a dense and accurate SfM point cloud initialization approach. We address the challenge of achieving photorealistic renderings from sparse image data, where basic 3DGS training may result in suboptimal convergence, thus leading to visual artifacts. The proposed method enhances precision and density of initially reconstructed point clouds by refining 3D positions and extrapolating additional points, even for difficult image regions, e.g. with repeating patterns and suboptimal visual coverage. Our contributions focus on improving ''Dense Feature Matching for Structure-from-Motion'' (DFM4SfM) based on a homographic decomposition of the image space to support 3DGS training: First, a grid-based feature detection method is introduced for DFM4SfM to ensure a welldistributed 3D Gaussian initialization uniformly over all depth planes. Second, the SfM feature matching is complemented by a geometric plausibility check, priming the homography estimation and thereby improving the initial placement of 3D Gaussians. Experimental results on the NeRF-LLFF dataset demonstrate that this approach achieves superior qualitative and quantitative results, even for fewer views, and the potential for a significantly accelerated 3DGS training with faster convergence.Item Distributed Surface Reconstruction(The Eurographics Association, 2024) Marin, Diana; Komon, Patrick; Ohrhallinger, Stefan; Wimmer, Michael; Liu, Lingjie; Averkiou, MelinosRecent advancements in scanning technologies and their rise in availability have shifted the focus from reconstructing surfaces from point clouds of small areas to large, e.g., city-wide scenes, containing massive amounts of data. We adapt a surface reconstruction method to work in a distributed fashion on a high-performance cluster, reconstructing datasets with millions of vertices in seconds. We exploit the locality of the connectivity required by the reconstruction algorithm to efficiently divide-andconquer the problem of creating triangulations from very large unstructured point clouds.