EG 2015 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2015 - Short Papers by Subject "Geometric algorithms"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Fast Edge-based Geodesic Poisson Disk Remeshing(The Eurographics Association, 2015) Uhlmann, Tom; Váša, Libor; Brunnett, Guido; B. Bickel and T. RitschelTriangular meshes of high complexity are common when created by a 3D scanner device and must be reduced for further processing. The geodesic Poisson disk remeshing [FZ08] is a method that generates a simplified mesh with highly regular triangles at the cost of exorbitant computation time. In this paper we will outline a new approach to this technique that makes it applicable for highly complex models. Our approach operates directly on the surface of the mesh, therefore works for meshes of arbitrary topology. Meshes consisting of millions of triangles can be reduced to an arbitrary complexity in just a few minutes while the original approach processes meshes with thousands of triangles in the same time. Our easy to implement remeshing technique also provides several options to preserve features.Item Fractured Object Reassembly via Robust Surface Registration(The Eurographics Association, 2015) Mavridis, Pavlos; Andreadis, Anthousis; Papaioannou, Georgios; B. Bickel and T. RitschelThe reassembly of fractured 3D objects from their parts is an important problem in cultural heritage and other domains.We approach reassembly from a geometric matching perspective and propose a pipeline for the automatic solution of the problem, where an efficient and generic three-level coarse-to-fine search strategy is used for the underlying global optimization. Key to the efficiency of our approach is the use of a discretized approximation of the surfaces' distance field, which significantly reduces the cost of distance queries and allows our method to systematically search the global parameter space with minimal cost. The resulting reassembly pipeline provides highly reliable alignment, as demonstrated through the reassembly of fractured objects from their fragments and the reconstruction of 3D objects from partial scans, showcasing the wide applicability of our methodology.