SCA 16: Eurographics/SIGGRAPH Symposium on Computer Animation
Permanent URI for this collection
Browse
Browsing SCA 16: Eurographics/SIGGRAPH Symposium on Computer Animation by Subject "Finite Element Method"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Asynchronous Implicit Backward Euler Integration(The Eurographics Association, 2016) Zhao, Danyong; Li, Yijing; Barbic, Jernej; Ladislav Kavan and Chris WojtanIn standard deformable object simulation in computer animation, all the mesh elements or vertices are timestepped synchronously, i.e., under the same timestep. Previous asynchronous methods have been largely limited to explicit integration. We demonstrate how to perform spatially-varying timesteps for the widely popular implicit backward Euler integrator. Spatiallyvarying timesteps are useful when the object exhibits spatially-varying material properties such as Young's modulus or mass density. In synchronous simulation, a region with a high stiffness (or low mass density) will force a small timestep for the entire mesh, at a great computational cost, or else, the motion in the stiff (or low mass density) region will be artificially damped and inaccurate. Our method can assign smaller timesteps to stiffer (or lighter) regions, which makes it possible to properly resolve (sample) the high-frequency deformable dynamics arising from the stiff (or light) materials, resulting in greater accuracy and less artificial damping. Because soft (or heavy) regions can continue using a large timestep, our method provides a significantly higher accuracy under a fixed computational budget.