EG 2016 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2016 - Short Papers by Subject "I.3.8 [Computer Graphics]"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Generic Physically-based Approach to the Opening Design Problem(The Eurographics Association, 2016) Κalampokis, Konstantinos; Papaioannou, Georgios; Gkaravelis, Anastasios; T. Bashford-Rogers and L. P. SantosToday architectural design harnesses photorealistic rendering to accurately assess energy transport for the design of energyefficient buildings. In this context, we present an automatic physically-based solution to the opening design problem, i.e. the goal-driven process of defining openings on the input geometry given a set of lighting constraints, to better exploit natural daylight. Based on a hierarchical approach that combines a linear optimization strategy and a genetic algorithm, our method computes the optimal number, position, size and shape of openings, using a path tracing-based estimator to precisely model the light transport for arbitrary materials and geometry. The method quickly converges to an opening configuration that optimally approximates the desired illumination, with no special geometry editing requirements and the ability to trade quality for performance for interactive applications. We validate our results against ground truth experiments for various scenes and time-of-day intervals.Item Interactive Deformation of Structurally Complex Heart Models Constructed from Medical Images(The Eurographics Association, 2016) Nakashima, Kazutaka; Koyama, Yuki; Igarashi, Takeo; Ijiri, Takashi; Inada, Shin; Nakazawa, Kazuo; T. Bashford-Rogers and L. P. SantosWe present a data structure for interactive deformation of complicated organ models, such as hearts, and a technique for automatically constructing the data structure from given medical images. The data structure is a dual model comprising of a graph structure for elastic simulation and a surface mesh for visualization. The system maps the simulation results to the mesh using a skinning technique. First, the system generates a dense graph and mesh from input medical images; then, it independently reduces them. Finally, the system establishes correspondence between the reduced graph and mesh by backtracking the reduction process. We also present an interactive browser for exploring heart shapes, and report initial feedback from target users.