SCA 2021: Eurographics/SIGGRAPH Symposium on Computer Animation
Permanent URI for this collection
Browse
Browsing SCA 2021: Eurographics/SIGGRAPH Symposium on Computer Animation by Subject "Animation"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A functional skeleton transfer(ACM, 2021) Musoni, Pietro; Marin, Riccardo; Melzi, Simone; Castellani, Umberto; Narain, Rahul and Neff, Michael and Zordan, VictorThe animation community has spent significant effort trying to ease rigging procedures. This is necessitated because the increasing availability of 3D data makes manual rigging infeasible. However, object animations involve understanding elaborate geometry and dynamics, and such knowledge is hard to infuse even with modern data-driven techniques. Automatic rigging methods do not provide adequate control and cannot generalize in the presence of unseen artifacts. As an alternative, one can design a system for one shape and then transfer it to other objects. In previous work, this has been implemented by solving the dense point-to-point correspondence problem. Such an approach requires a significant amount of supervision, often placing hundreds of landmarks by hand. This paper proposes a functional approach for skeleton transfer that uses limited information and does not require a complete match between the geometries. To do so, we suggest a novel representation for the skeleton properties, namely the functional regressor, which is compact and invariant to different discretizations and poses. We consider our functional regressor a new operator to adopt in intrinsic geometry pipelines for encoding the pose information, paving the way for several new applications. We numerically stress our method on a large set of different shapes and object classes, providing qualitative and numerical evaluations of precision and computational efficiency. Finally, we show a preliminar transfer of the complete rigging scheme, introducing a promising direction for future explorations.Item A GAN-Like Approach for Physics-Based Imitation Learning and Interactive Control(ACM, 2021) Xu, Pei; Karamouzas, Ioannis; Narain, Rahul and Neff, Michael and Zordan, VictorWe present a simple and intuitive approach for interactive control of physically simulated characters. Our work builds upon generative adversarial networks (GAN) and reinforcement learning, and introduces an imitation learning framework where an ensemble of classifiers and an imitation policy are trained in tandem given pre-processed reference clips. The classifiers are trained to discriminate the reference motion from the motion generated by the imitation policy, while the policy is rewarded for fooling the discriminators. Using our GAN-like approach, multiple motor control policies can be trained separately to imitate different behaviors. In runtime, our system can respond to external control signal provided by the user and interactively switch between different policies. Compared to existing method, our proposed approach has the following attractive properties: 1) achieves state-of-the-art imitation performance without manually designing and fine tuning a reward function; 2) directly controls the character without having to track any target reference pose explicitly or implicitly through a phase state; and 3) supports interactive policy switching without requiring any motion generation or motion matching mechanism. We highlight the applicability of our approach in a range of imitation and interactive control tasks, while also demonstrating its ability to withstand external perturbations as well as to recover balance. Overall, our approach has low runtime cost and can be easily integrated into interactive applications and games.Item Global Position Prediction for Interactive Motion Capture(ACM, 2021) Schreiner, Paul; Perepichka, Maksym; Lewis, Hayden; Darkner, Sune; Kry, Paul G.; Erleben, Kenny; Zordan, Victor B.; Narain, Rahul and Neff, Michael and Zordan, VictorWe present a method for reconstructing the global position of motion capture where position sensing is poor or unavailable. Capture systems, such as IMU suits, can provide excellent pose and orientation data of a capture subject, but otherwise need post processing to estimate global position. We propose a solution that trains a neural network to predict, in real-time, the height and body displacement given a short window of pose and orientation data. Our training dataset contains pre-recorded data with global positions from many different capture subjects, performing a wide variety of activities in order to broadly train a network to estimate on like and unseen activities. We compare training on two network architectures, a universal network (u-net) and a traditional convolutional neural network (CNN) - observing better error properties for the u-net in our results. We also evaluate our method for different classes of motion. We observe high quality results for motion examples with good representation in specialized datasets, while general performance appears better in a more broadly sampled dataset when input motions are far from training examples.Item Recovering Geometric Information with Learned Texture Perturbations(ACM, 2021) Wu, Jane; Jin, Yongxu; Geng, Zhenglin; Zhou, Hui; Fedkiw, Ronald; Narain, Rahul and Neff, Michael and Zordan, VictorRegularization is used to avoid overfitting when training a neural network; unfortunately, this reduces the attainable level of detail hindering the ability to capture high-frequency information present in the training data. Even though various approaches may be used to re-introduce high-frequency detail, it typically does not match the training data and is often not time coherent. In the case of network inferred cloth, these sentiments manifest themselves via either a lack of detailed wrinkles or unnaturally appearing and/or time incoherent surrogate wrinkles. Thus, we propose a general strategy whereby high-frequency information is procedurally embedded into low-frequency data so that when the latter is smeared out by the network the former still retains its high-frequency detail. We illustrate this approach by learning texture coordinates which when smeared do not in turn smear out the high-frequency detail in the texture itself but merely smoothly distort it. Notably, we prescribe perturbed texture coordinates that are subsequently used to correct the over-smoothed appearance of inferred cloth, and correcting the appearance from multiple camera views naturally recovers lost geometric information.