36-Issue 8
Permanent URI for this collection
Browse
Browsing 36-Issue 8 by Subject "and systems"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Bi‐Directional Procedural Model for Architectural Design(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Hua, H.; Chen, Min and Zhang, Hao (Richard)It is a challenge for shape grammars to incorporate spatial hierarchy and interior connectivity of buildings in early design stages. To resolve this difficulty, we developed a bi‐directional procedural model: the forward process constructs the derivation tree with production rules, while the backward process realizes the tree with shapes in a stepwise manner (from leaves to the root). Each inverse‐derivation step involves essential geometric‐topological reasoning. With this bi‐directional framework, design constraints and objectives are encoded in the grammar‐shape translation. We conducted two applications. The first employs geometric primitives as terminals and the other uses previous designs as terminals. Both approaches lead to consistent interior connectivity and a rich spatial hierarchy. The results imply that bespoke geometric‐topological processing helps shape grammar to create plausible, novel compositions. Our model is more productive than hand‐coded shape grammars, while it is less computation‐intensive than evolutionary treatment of shape grammars.It is a challenge for shape grammars to incorporate spatial hierarchy and interior connectivity of buildings in early design stages. To resolve this difficulty, we developed a bi‐directional procedural model: the forward process constructs the derivation tree with production rules, while the backward process realizes the tree with shapes in a stepwise manner (from leaves to the root). Each inverse‐derivation step involves essential geometric‐topological reasoning. With this bi‐directional framework, design constraints and objectives are encoded in the grammar‐shape translation.Item Symmetry‐Aware Mesh Segmentation into Uniform Overlapping Patches(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Dessein, A.; Smith, W. A. P.; Wilson, R. C.; Hancock, E. R.; Chen, Min and Zhang, Hao (Richard)We present intrinsic methods to address the fundamental problem of segmenting a mesh into a specified number of patches with a uniform size and a controllable overlap. Although never addressed in the literature, such a segmentation is useful for a wide range of processing operations where patches represent local regions and overlaps regularize solutions in neighbour patches. Further, we propose a symmetry‐aware distance measure and symmetric modification to furthest‐point sampling, so that our methods can operate on semantically symmetric meshes. We introduce quantitative measures of patch size uniformity and symmetry, and show that our segmentation outperforms state‐of‐the‐art alternatives in experiments on a well‐known dataset. We also use our segmentation in illustrative applications to texture stitching and synthesis where we improve results over state‐of‐the‐art approaches.We present intrinsic methods to address the fundamental problem of segmenting a mesh into a specified number of patches with a uniform size and a controllable overlap. Although never addressed in the literature, such a segmentation is useful for a wide range of processing operations where patches represent local regions and overlaps regularize solutions in neighbour patches. Further, we propose a symmetry‐aware distance measure and symmetric modification to furthest‐point sampling, so that our methods can operate on semantically symmetric meshes. We introduce quantitative measures of patch size uniformity and symmetry, and show that our segmentation outperforms state‐of‐the‐art alternatives in experiments on a well‐known dataset.