32-Issue 2
Permanent URI for this collection
Browse
Browsing 32-Issue 2 by Subject "Computer Graphics [I.3.5]"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Circular Arc Snakes and Kinematic Surface Generation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Barton, Michael; Shi, Ling; Kilian, Martin; Wallner, Johannes; Pottmann, Helmut; I. Navazo, P. PoulinWe discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including ''rationalization'' of a surface by congruent arcs, form finding and, most interestingly, non-static architecture.Item A Correlated Parts Model for Object Detection in Large 3D Scans(The Eurographics Association and Blackwell Publishing Ltd., 2013) Sunkel, Martin; Jansen, Silke; Wand, Michael; Seidel, Hans-Peter; I. Navazo, P. PoulinThis paper addresses the problem of detecting objects in 3D scans according to object classes learned from sparse user annotation. We model objects belonging to a class by a set of fully correlated parts, encoding dependencies between local shapes of different parts as well as their relative spatial arrangement. For an efficient and comprehensive retrieval of instances belonging to a class of interest, we introduce a new approximate inference scheme and a corresponding planning procedure. We extend our technique to hierarchical composite structures, reducing training effort and modeling spatial relations between detected instances. We evaluate our method on a number of real-world 3D scans and demonstrate its benefits as well as the performance of the new inference algorithm.Item Mutable Elastic Models for Sculpting Structured Shapes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Milliez, Antoine; Wand, Michael; Cani, Marie-Paule; Seidel, Hans-Peter; I. Navazo, P. PoulinIn this paper, we propose a new paradigm for free-form shape deformation. Standard deformable models minimize an energy measuring the distance to a single target shape. We propose a new, ''mutable'' elastic model. It represents complex geometry by a collection of parts and measures the distance of each part measures to a larger set of alternative rest configurations. By detecting and reacting to local switches between best-matching rest states, we build a 3D sculpting system: It takes a structured shape consisting of parts and replacement rules as input. The shape can subsequently be elongated, compressed, bent, cut, and merged within a constraints-based free-form editing interface, where alternative rest-states model to such changes. In practical experiments, we show that the approach yields a surprisingly intuitive and easy to implement interface for interactively designing objects described by such discrete shape grammars, for which direct shape control mechanisms were typically lacking.Item Preface and Table of Contents(The Eurographics Association and Blackwell Publishing Ltd., 2013) I. Navazo, P. Poulin