CEIG14
Permanent URI for this collection
Browse
Browsing CEIG14 by Subject "Line and curve generation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item GPU Visualization and Voxelization of Yarn-Level Cloth(The Eurographics Association, 2014) Lopez-Moreno, Jorge; Cirio, Gabriel; Miraut, David; Otaduy, Miguel Angel; Adolfo Munoz and Pere-Pau VazquezMost popular methods in cloth rendering rely on volumetric data in order to model complex optical phenomena such as sub-surface scattering. Previous work represents yarns as a sequence of identical but rotated crosssections. While these approaches are able to produce very realistic illumination models, the required volumetric representation is difficult to compute and render, forfeiting any interactive feedback. In this paper, we introduce a method based on the GPU for simultaneous visualization and voxelization, suitable for both interactive and offline rendering. Our method can interactively voxelize millions of polygons into a 3D texture, generating a volume with sub-voxel accuracy which is suitable even for high-density weaving such as linen.Item Image-Based Flow Transfer(The Eurographics Association, 2014) Bosch, Carles; Patow, Gustavo A.; Adolfo Munoz and Pere-Pau VazquezWeathering phenomena are ubiquitous to urban environments. In particular, fluid flow becomes a specially representative but difficult phenomenon to reproduce. In order to produce realistic flow effects, it is possible to take advantage of the widespread availability of flow images on the internet, which can be used to gather key information about the flow. In this paper we present a technique that allows transferring flow phenomena between photographs, adapting the flow to the target image and giving the user flexibility and control through specifically tailored parameters. This is done through two types of control curves: a fitted theoretical curve for the mass of deposited material, and a control curve extracted from the images for the color. This way, the user has a set of simple and intuitive parameters and tools to control the flow phenomena on the target image. To illustrate our technique, we present a complete set of images that somewhat cover a large range of flow phenomena in urban environments.