43-Issue 7
Permanent URI for this collection
Browse
Browsing 43-Issue 7 by Subject "CCS Concepts: Computing methodologies → Image processing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Controllable Anime Image Editing Based on the Probability of Attribute Tags(The Eurographics Association and John Wiley & Sons Ltd., 2024) Song, Zhenghao; Mo, Haoran; Gao, Chengying; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyEditing anime images via probabilities of attribute tags allows controlling the degree of the manipulation in an intuitive and convenient manner. Existing methods fall short in the progressive modification and preservation of unintended regions in the input image. We propose a controllable anime image editing framework based on adjusting the tag probabilities, in which a probability encoding network (PEN) is developed to encode the probabilities into features that capture continuous characteristic of the probabilities. Thus, the encoded features are able to direct the generative process of a pre-trained diffusion model and facilitate the linear manipulation.We also introduce a local editing module that automatically identifies the intended regions and constrains the edits to be applied to those regions only, which preserves the others unchanged. Comprehensive comparisons with existing methods indicate the effectiveness of our framework in both one-shot and linear editing modes. Results in additional applications further demonstrate the generalization ability of our approach.Item Palette-Based Recolouring of Gradient Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2024) Houssaije, Willard A. Verschoore de la; Echevarria, Jose; Kosinka, Jirí; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyGradient meshes are a vector graphics primitive formed by a regular grid of bicubic quad patches. They allow for the creation of complex geometries and colour gradients, with recent extensions supporting features such as local refinement and sharp colour transitions. While many methods exist for recolouring raster images, often achieved by modifying an automatically detected palette of the image, gradient meshes have not received the same amount of attention when it comes to global colour editing. We present a novel method that allows for real-time palette-based recolouring of gradient meshes, including gradient meshes constructed using local refinement and containing sharp colour transitions. We demonstrate the utility of our method on synthetic illustrative examples as well as on complex gradient meshes.