Volume 36 (2017)
Permanent URI for this community
Browse
Browsing Volume 36 (2017) by Subject "[Geometric algorithms"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Group Representation of Global Intrinsic Symmetries(The Eurographics Association and John Wiley & Sons Ltd., 2016) Wang, Hui; Huang, Hui; Jernej Barbic and Wen-Chieh Lin and Olga Sorkine-HornungGlobal intrinsic symmetry detection of 3D shapes has received considerable attentions in recent years. However, unlike extrinsic symmetry that can be represented compactly as a combination of an orthogonal matrix and a translation vector, representing the global intrinsic symmetry itself is still challenging. Most previous works based on point-to-point representations of global intrinsic symmetries can only find reflectional symmetries, and are inadequate for describing the structure of a global intrinsic symmetry group. In this paper, we propose a novel group representation of global intrinsic symmetries, which describes each global intrinsic symmetry as a linear transformation of functional space on shapes. If the eigenfunctions of the Laplace-Beltrami operator on shapes are chosen as the basis of functional space, the group representation has a block diagonal structure. We thus prove that the group representation of each symmetry can be uniquely determined from a small number of symmetric pairs of points under certain conditions, where the number of pairs is equal to the maximum multiplicity of eigenvalues of the Laplace- Beltrami operator. Based on solid theoretical analysis, we propose an efficient global intrinsic symmetry detection method, which is the first one able to detect all reflectional and rotational global intrinsic symmetries with a clear group structure description. Experimental results demonstrate the effectiveness of our approach.Item Informative Descriptor Preservation via Commutativity for Shape Matching(The Eurographics Association and John Wiley & Sons Ltd., 2017) Nogneng, Dorian; Ovsjanikov, Maks; Loic Barthe and Bedrich BenesWe consider the problem of non-rigid shape matching, and specifically the functional maps framework that was recently proposed to find correspondences between shapes. A key step in this framework is to formulate descriptor preservation constraints that help to encode the information (e.g., geometric or appearance) that must be preserved by the unknown map. In this paper, we show that considering descriptors as linear operators acting on functions through multiplication, rather than as simple scalar-valued signals, allows to extract significantly more information from a given descriptor and ultimately results in a more accurate functional map estimation. Namely, we show that descriptor preservation constraints can be formulated via commutativity with respect to the unknown map, which can be conveniently encoded by considering relations between matrices in the discrete setting. As a result, when the vector space spanned by the descriptors has a dimension smaller than that of the reduced basis, our optimization may still provide a fully-constrained system leading to accurate point-to-point correspondences, while previous methods might not. We demonstrate on a wide variety of experiments that our approach leads to significant improvement for functional map estimation by helping to reduce the number of necessary descriptor constraints by an order of magnitude, even given an increase in the size of the reduced basis.