EuroVisShort2019
Permanent URI for this collection
Browse
Browsing EuroVisShort2019 by Subject "Computational control theory"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item ReLVis: Visual Analytics for Situational Awareness During Reinforcement Learning Experimentation(The Eurographics Association, 2019) Saldanha, Emily; Praggastis, Brenda; Billow, Todd; Arendt, Dustin L.; Johansson, Jimmy and Sadlo, Filip and Marai, G. ElisabetaReinforcement learning (RL) is a branch of machine learning where an agent learns to maximize reward through trial and error. RL is challenging and data/compute intensive leading practitioners to become overwhelmed and make poor modeling decisions. Our contribution is a Visual Analytics tool designed to help data scientists maintain situation awareness during RL experimentation. Our tool allows users to understand which hyper-parameter values lead to better or worse outcomes, what behaviors are associated with high and low reward, and how behaviors evolve throughout training. We evaluated our tool through three uses cases using state of the art deep RL models demonstrating how our tool leads to RL situation awareness.