32-Issue 1
Permanent URI for this collection
Browse
Browsing 32-Issue 1 by Subject "Computational Geometry and Object Modelling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interactive Planarization and Optimization of 3D Meshes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Poranne, Roi; Ovreiu, Elena; Gotsman, Craig; Holly Rushmeier and Oliver DeussenConstraining 3D meshes to restricted classes is necessary in architectural and industrial design, but it can be very challenging to manipulate meshes while staying within these classes. Specifically, polyhedral meshesâ ''those having planar facesâ ''are very important, but also notoriously difficult to generate and manipulate efficiently. We describe an interactive method for computing, optimizing and editing polyhedral meshes. Efficiency is achieved thanks to a numerical procedure combining an alternating least-squares approach with the penalty method. This approach is generalized to manipulate other subsets of polyhedral meshes, as defined by a variety of other constraints.Constraining 3D meshes to restricted classes is necessary in architectural and industrial design, but it can be very challenging to manipulate meshes while staying within these classes. Specifically, polyhedral meshes - those having planar faces - are very important, but also notoriously difficult to generate and manipulate efficiently. We describe an interactive method for computing, optimizing and editing polyhedral meshes. Efficiency is achieved thanks to a numerical procedure combining an alternating least-squares approach with the penalty method. This approach is generalized to manipulate other subsets of polyhedral meshes, as defined by a variety of other constraints.Item Simulation of Morphology Changes in Drying Leaves(The Eurographics Association and Blackwell Publishing Ltd., 2013) Jeong, SoHyeon; Park, Si-Hyung; Kim, Chang-Hun; Holly Rushmeier and Oliver DeussenWe introduce a biologically motivated simulation technique for the realistic shape deformation of drying leaves. In contrast to skeleton-based leaf deformation, our approach simulates the whole leaf surface to capture the fine details of desiccated leaves. We represent a leaf as a triangulated double-layer structure that consists of a Delaunay triangulation discretized along the vein structure and its corresponding Voronoi diagram. This structure can generate not only sharp creases along leaf veins, but also the complicated curling and crumpling on the leaf surface. The loss of water is the major factor that controls the inhomogeneous shrinkage of drying leaves. The proposed osmotic water flow successfully models the gradual changes of dehydrated regions advancing towards the veins. We demonstrate the robustness of our method by comparing a sequence of simulated morphology changes with photographs of real leaves.We introduce a biologically motivated simulation technique for the realistic shape deformation of drying leaves. In contrast to skeleton-based leaf deformation, our approach simulates the whole leaf surface to capture the fine details of desiccated leaves. We represent a leaf as a triangulated double-layer structure that consists of a Delaunay triangulation discretized along the vein structure and its corresponding Voronoi diagram. This structure can generate not only sharp creases along leaf veins, but also the complicated curling and crumpling on the leaf surface. The loss of water is the major factor that controls the inhomogeneous shrinkage of drying leaves.