Italian Chapter Conference 2018 - Smart Tools and Apps in computer Graphics
Permanent URI for this collection
Browse
Browsing Italian Chapter Conference 2018 - Smart Tools and Apps in computer Graphics by Subject "Animation"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item CageLab: an Interactive Tool for Cage-Based Deformations(The Eurographics Association, 2018) Casti, S.; Corda, F.; Livesu, M.; Scateni, R.; Livesu, Marco and Pintore, Gianni and Signoroni, AlbertoPosing a digital character by acting on the vertices of a coarse control cage is, after skeleton-based, probably the most widely used technique for digital animation. While skeleton-based techniques have been deeply researched and a variety of industrial and academic tools are available for it, cage-based techniques have historically received less attention. In recent years we observed an increasing interest in the field, which results in a growing number of publications both on algorithms for automatic or semi-automatic cage generation, and for smooth barycentric coordinates for general polyhedral meshes. We introduce CageLab: a novel research-oriented software tool that allows scholars and practitioners in general to get acquainted with cagebased animation in a lightweight and easy to use environment. Users can: (i) load digital characters and their associated cages, applying character deformations with a selection of the most widely used barycentric coordinates available in literature; (ii) compare alternative cages for a given digital character; (iii) compare alternative barycentric coordinates w.r.t their smoothness and locality within the cage; (iv) use CageLab for educational purposes, or to produce images and videos for scientific articles. We publicly release the tool to the community, with the hope to support this growth, and possibly foster even more research in the field.Item An Optimized Marker Layout for 3D Facial Motion Capture(The Eurographics Association, 2018) Will, A. D.; Martino, J. M. De; Bezerra, J.; Livesu, Marco and Pintore, Gianni and Signoroni, AlbertoFacial motion capture (Facial Mocap) has gained increasing attention from researchers and professionals from different areas of interest, including entertainment, face-to-face communication, and training. Facial Mocap allows straightforward capture of dynamic behavior of the face from live action, providing data that can be used to drive realistic animation of a 3D virtual face. Facial Mocap is an advantageous alternative to the direct and laborious manipulation of the face model. In particular, marker-based mocap technique acquires three-dimensional facial points trajectories by tracking markers fixed on the face of an actor. However, despite the existence of several empirical facial marker layouts, the ideal positioning of the markers is still an open question. This paper presents an optimization technique to calculate the quantity and positioning facial markers and establish their influences on the polygon mesh based on the correlation of markers in a dense layout. The technique generates an optimized marker layout discarding unnecessary markers and positioning the remaining ones.Item A Virtual Character Posing System based on Reconfigurable Tangible User Interfaces and Immersive Virtual Reality(The Eurographics Association, 2018) Cannavò, A.; Lamberti, F.; Livesu, Marco and Pintore, Gianni and Signoroni, AlbertoComputer animation and, particularly, virtual character animation, are very time consuming and skill-intensive tasks, which require animators to work with sophisticated user interfaces. Tangible user interfaces (TUIs) already proved to be capable of making character animation more intuitive, and possibly more efficient, by leveraging the affordances provided by physical props that mimic the structure of virtual counterparts. The main downside of existing TUI-based animation solutions is the reduced accuracy, which is due partly to the use of mechanical parts, partly to the fact that, despite the adoption of a 3D input, users still have to work with a 2D output (usually represented by one or more views displayed on a screen). However, output methods that are natively 3D, e.g., based on virtual reality (VR), have been already exploited in different ways within computer animation scenarios. By moving from the above considerations and by building upon an existing work, this paper proposes a VR-based character animation system that combines the advantages of TUIs with the improved spatial awareness, enhanced visualization and better control on the observation point in the virtual space ensured by immersive VR. Results of a user study with both skilled and unskilled users showed a marked preference for the devised system, which was judged as more intuitive than that in the reference work, and allowed users to pose a virtual character in a lower time and with a higher accuracy.