Italian Chapter Conference 2018 - Smart Tools and Apps in computer Graphics
Permanent URI for this collection
Browse
Browsing Italian Chapter Conference 2018 - Smart Tools and Apps in computer Graphics by Subject "Mesh models"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Fast Centroidal Deformation for Large Mesh Models(The Eurographics Association, 2018) Morsucci, A.; Centin, M.; Signoroni, A.; Livesu, Marco and Pintore, Gianni and Signoroni, AlbertoWe present an algorithm that allows fast non-linear deformation editing on high-quality meshes. The proposed Fast Centroidal Deformation (FCD) method is based on a multi-resolution framework, where a centroidal deformation graph is built over the mesh in order to allow fast non-linear optimization at a coarse scale. The resulting deformation is then propagated to the initial dense mesh by exploiting the relationship between the constructed deformation graph and the input mesh through a mapping function that unifies local rotations and global translations without the need of solving a system composed by a number of linear equations of the same magnitude of the number of vertices of the mesh. A number of flexible user constraints can be imposed in the deformation through a handle-based metaphor where the user can redefine the position and orientation of single control points or entire portions of the input model. The proposed method addresses the obstacle of non-linear deformation on meshes composed by millions of vertices and is compared with the reference deformation techniques, showing significant improvements in terms of computational efficiency without renouncing to the quality of the results given by non-linear methods.Item Gradient Field Estimation on Triangle Meshes(The Eurographics Association, 2018) Mancinelli, C.; Livesu, M.; Puppo, E.; Livesu, Marco and Pintore, Gianni and Signoroni, AlbertoThe estimation of the differential properties of a function sampled at the vertices of a discrete domain is at the basis of many applied sciences. In this paper, we focus on the computation of function gradients on triangle meshes. We study one face-based method (the standard the facto), plus three vertex based methods. Comparisons regard accuracy, ability to perform on different domain discretizations, and efficiency. We performed extensive tests and provide an in-depth analysis of our results. Besides some behaviour that is common to all methods, in our study we found that, considering both accuracy and efficiency, some methods are preferable to others. This directly translates to useful suggestions for the implementation of gradient estimators in research and industrial code.Item Simplification of Shapes for Fabrication with V-Groove Milling Tools(The Eurographics Association, 2018) Muntoni, A.; Scalas, A.; Nuvoli, S.; Scateni, R.; Livesu, Marco and Pintore, Gianni and Signoroni, AlbertoWe introduce here a pipeline for simplifying digital 3D shapes with the aim of fabricating them using 2D polygonal flat parts. Our method generates shapes that, once unfolded, can be fabricated with CNC milling machines using special tools called V-Grooves. These tools make V-shaped furrows at given angles depending on the shape of the used tool. Milling the edges of each flat facet simplifies the manual assembly that consists only in folding the facets at the desired angle between the adjacent facets. Our method generates simplified shapes where every dihedral angle between adjacent facets belongs to a restricted set, thus making the assembly process quicker and more straightforward. Firstly, our method automatically computes a simplification of the model, iterating local changes on a triangle mesh generated by applying the Marching Cubes algorithm on the original mesh. The user performs a second manual simplification using a tool that removes spurious facets. Finally, we use a simple unfolding algorithm which flattens the polygonal facets onto the 2D plane, so that a CNC milling machine can fabricate it with a sheet of rigid material.