Material Appearance Modeling
Permanent URI for this community
Browse
Browsing Material Appearance Modeling by Subject "and texture"
Now showing 1 - 20 of 21
Results Per Page
Sort Options
Item Bonn Appearance Benchmark(The Eurographics Association, 2020) Merzbach, Sebastian; Klein, Reinhard; Klein, Reinhard and Rushmeier, HollyThere is a general shortage of standardized comparisons in the field of appearance modeling. We therefore introduce a benchmark for assessing the quality of reflectance models on a dataset of high quality material measurements obtained with a commercial appearance scanner. The dataset currently consists of 56 fabric materials which are measured as radiometrically calibrated HDR images together with a precise surface geometry. We pose a public challenge to attract further participation and spark new research. Participants evaluate their models on provided directional light and view sampling to recreate the appearance of a set of unseen images per material. The results are automatically evaluated under various image metrics and ranked in a public leaderboard. Our benchmark provides standardized testing and thus enables fair comparisons between related works. We also release baseline SVBRDF material fits.Item BTF-based Material Representations: Current Challenges(The Eurographics Association, 2013) Ruiters, R.; Klein, R.; Reinhard Klein and Holly RushmeierThe development of Bidirectional Texture Functions (BTFs) has made it possible for a wide range of different materials to acquire their characteristic appearance from a real-world counterpart and reproduce it faithfully in a high-quality rendering, that is hard to distinguish from an actual photograph. However, they have not yet found wide-spread use in practical applications. In this paper, we discuss, from our point of view, the main reasons for this and which unanswered questions and challenges for future research in this area remain. We focus on three different aspects: How can BTFs be measured and represented more efficiently? How can they be edited intuitively? And finally, can we find a perceptual difference metric between materials?Item Comparative Study of Layered Material Models(The Eurographics Association, 2019) Bati, Mégane; Pacanowski, Romain; Barla, Pascal; Klein, Reinhard and Rushmeier, HollyThe accurate reproduction of layered materials is an important part of physically-based rendering applications. Since no exact analytical model exists for any configuration of layer stacks, available models make approximations. In this paper, we propose to evaluate them with a numerical approach: we simulate BRDFs and BTDFs for layered materials in order to compare existing models against a common reference. We show that: (1) no single model always outperforms the others and (2) significant differences remain between simulated and modeled materials. We analyse the reasons for these discrepancies and introduce immediate corrections.Item Exploring Material Recognition for Estimating Reflectance and Illumination From a Single Image(The Eurographics Association, 2016) Weinmann, Michael; Klein, Reinhard; Reinhard Klein and Holly RushmeierIn this paper, we propose a novel approach for recovering illumination and reflectance from a single image. Our approach relies on the assumption that the surface geometry has already been reconstructed and a-priori knowledge in form of a database of digital material models is available. The first step of our technique consists in recognizing the respective material in the image using synthesized training data based on the given material database. Subsequently, the illumination conditions are estimated based on the recognized material and the surface geometry. Using this novel strategy we demonstrate that reflectance and illumination can be estimated reliably for several materials that are beyond simple Lambertian surface reflectance behavior because of exhibiting mesoscopic effects such as interreflections and shadows.Item A Genetic Algorithm Based Heterogeneous Subsurface Scattering Representation(The Eurographics Association, 2020) Kurt, Murat; Klein, Reinhard and Rushmeier, HollyIn this paper, we present a novel heterogeneous subsurface scattering (sss) representation, which is based on a combination of Singular Value Decomposition (SVD) and genetic optimization techniques. To find the best transformation that is applied to measured subsurface scattering data, we use a genetic optimization framework, which tries various transformations to the measured heterogeneous subsurface scattering data to find the fittest one. After we apply the best transformation, we compactly represent measured subsurface scattering data by separately applying the SVD per-color channel of the transformed profiles. In order to get a compact and accurate representation, we apply the SVD on the model errors, iteratively. We validate our approach on a range of optically thick, real-world translucent materials. It's shown that our genetic algorithm based heterogeneous subsurface scattering representation achieves greater visual accuracy than alternative techniques for the same level of compression.Item Geometric Accuracy Analysis of Stationary BTF Gonioreflectometers(The Eurographics Association, 2015) Havran, V.; Reinhard Klein and Holly RushmeierThe accurate BTF data representation requires specialized measurement gantries, some of them designed as gonireflectometers. These consist of an illumination source and a camera mounted on two robotic arms, one degree of freedom possibly achieved by rotation stage which a measured sample is mounted on. While there are several variations of the gonioreflectometer gantry, the principle of all remains the same, positioning directly the illumination and detector on a hemispherical surface over a sample. We analyze the positioning error of such gonioreflectometers. The input parameters are the required spatial resolution of a BTF sample and the distance between the camera used as a detector and the BTF sample. Our analysis confirms that the requirements for mechatronic actuators for the positioning of the sample and arms are very high and near the limit of state of the art technology.Item Grand Challenges: Material Models in the Automotive Industry(The Eurographics Association, 2013) Schregle, R.; Denk, C.; Slusallek, P.; Glencross, M.; Reinhard Klein and Holly RushmeierMaterial reflectance definitions are core to high fidelity visual simulation of objects within a compelling 3D scene. In the automotive industry these are used across the entire business process: from conceptualisation of a new product range, through to the final sale. However, current state-of-the-art of material representations leave much to be desired for fast and practical deployment in the industry. Even after decades of research and development, there are no interoperable standards for material models to facilitate exchange between applications. A large discrepancy also exists between the quality of material models used (and indeed the quality at which they can be displayed) across the spectrum of use-cases within the industry. Focussing on the needs of the Automotive Industry, in this position paper, we summarise the main issues that limit the effective use of material models. Furthermore, we outline specific solutions we believe could be investigated in order to address this problem. This paper is the result of a review conducted in conjunction with several key players in the automotive field.Item Improving Spectral Upsampling with Fluorescence(The Eurographics Association, 2020) König, Lars; Jung, Alisa; Dachsbacher, Carsten; Klein, Reinhard and Rushmeier, HollyModern photorealistic rendering simulates spectral behaviour of light. Since many assets are still created in different RGB color spaces, spectral upsampling of the RGB colors to a spectral representation is required to use them in a spectral renderer. Limiting the upsampled spectra to physically valid and natural, i.e. smooth, spectra results in a more realistic image, but decreases the size of the gamut of colors that can be recreated. In order to upsample wide gamut color spaces with colors outside the gamut of physically valid reflectance spectra, a previous approach added fluorescence to create accurate and physically valid representations. We extend this approach to increase the realism and accuarcy while considering memory and computation time.Item Linear Transport Theory and Applications to Rendering(The Eurographics Association, 2014) Jakob, Wenzel; Reinhard Klein and Holly RushmeierIn this talk, I will give an overview of one-dimensional Linear Transport Theory, which concerns itself with the study of random scattering and absorption processes and the inference of large-scale behavior from simple local scattering models. Research over the last 75 years has led to a rich toolbox of solution techniques for these types of problems, including Monte Carlo, Diffusion Theory, H-functions, Discrete Ordinates, and the Adding-Doubling method. I will give an intuitive overview of each of these techniques and discuss advantages and disadvantages. Following this, I will discuss how this problem is relevant to rendering, where it leads to a flexible and efficient method for rendering general layered materials.Item The Material Definition Language(The Eurographics Association, 2015) Kettner, L.; Raab, M.; Seibert, D.; Jordan, J.; Keller, A.; Reinhard Klein and Holly RushmeierWe introduce the physically-based Material Definition Language (MDL). Based on the principle of strictly separating material definition and rendering algorithms, each MDL material is applicable across different rendering paradigms ranging from realtime over interactive solutions to advanced light transport simulation.Item Neural Appearance Synthesis and Transfer(The Eurographics Association, 2019) Mazlov, Ilya; Merzbach, Sebastian; Trunz, Elena; Klein, Reinhard; Klein, Reinhard and Rushmeier, HollyAppearance acquisition is a challenging problem. Existing approaches require expensive hardware and acquisition times are long. Alternative ''in-the-wild'' few-shot approaches provide a limited reconstruction quality. Furthermore, there is a fundamental tradeoff between spatial resolution and the physical sample dimensions that can be captured in one measurement. In this paper, we investigate how neural texture synthesis and neural style transfer approaches can be applied to generate new materials with high spatial resolution from high quality SVBRDF measurements. We perform our experiments on a new database of measured SVBRDFs.Item On the Advancement of BTF Measurement on Site(The Eurographics Association, 2018) Havran, Vlastimil; Hosek, Jan; Nemcova, Sarka; Cap, Jiri; Reinhard Klein and Holly RushmeierWe present our progress to the on-site measurement of the spatially varying surface reflectance represented by bidirectional texture function (BTF). This requires a physical realization of a portable instrument that can be brought to the sample, outside the laboratory. We discuss our motivation, the main issues, and challenges for making such an instrument possible. We focus on the design of the mechanical parts that are required for an easy manipulation of the device on site and describe our experiences with the instrument in practice. The design uses a miniaturized rotary light stage. It allows for measurement of HDR images with the acquisition rate of 1000 HDR images per minute, where one HDR image consists of 4 individual exposures.Item Practical Experiences with Using Autocollimator for Surface Reflectance Measurement(The Eurographics Association, 2016) Havran, Vlastimil; Reinhard Klein and Holly RushmeierWe present our experiences with using an autocollimator to set up the surface reflectance measurement for both BRDF and BTF. Assuming the measured material appearance is put on a locally flat surface, the autocollimator allows us to set the perpendicularity of the measured sample in stationary measurement setups. The principle works also vice versa, we can align the measurement setup against a stationary sample for on-site measurements. The autocollimator requires to use a collimated beam of light, a mirror, a beam splitter, and a detector. We describe the autocollimator principle, problems, and the issues involved when using an autocollimator for surface reflectance measurement setups.Item Reducing Anisotropic BSDF Measurement to Common Practice(The Eurographics Association, 2014) Ward, Greg; Kurt, Murat; Bonneel, Nicolas; Reinhard Klein and Holly RushmeierWe address the problem of measuring and representing reflection and transmission for anisotropic materials without relying on mathematical models or a large sample database. By eliminating assumptions of material behavior, we arrive at a general method that works for any surface class, from metals to fabrics, fritted glazing, and prismatic films. To make data gathering practical, we introduce a robust analysis method that interpolates a sparse set of incident angle measurements to obtain a continuous function over the full 4-D domain. We then convert this interpolant to a standard representation tailored for efficient rendering and supported by a common library that facilitates data sharing. We conclude with some remaining challenges to making anisotropic BSDF measurements truly practical for renderingItem A Simple Diffuse Fluorescent BBRRDF Model(The Eurographics Association, 2018) Jung, Alisa; Hanika, Johannes; Marschner, Steve; Dachsbacher, Carsten; Reinhard Klein and Holly RushmeierFluorescence - the effect of a photon being absorbed at one wavelength and re-emitted at another - is present in many common materials such as clothes and paper. Yet there has been little research in rendering or modeling fluorescent surfaces. We discuss the design decisions leading to a simple model for a diffuse fluorescent BBRRDF (bispectral bidirectional reflection and reradiation distribution function). In contrast to reradiation matrix based models our model is continuous in wavelength space. It can be parameterized by artificially designed spectra as well as by many publicly available physical measurements. It combines fluorescence and non-fluorescent reflectance, as most real-world materials are not purely fluorescent but also reflect some light without changing its wavelength. With its simple parameterization the BBRRDF is intended as a starting point for any physically based spectral rendering system aiming to simulate fluorescence. To that end we show how to continuously sample both incident and exitant wavelengths from our BBRRDF which makes it suitable for bidirectional transport, and we discuss energy and photon conservation in the context of fluorescence.Item Spectral Rendering with the Bounded MESE and sRGB Data(The Eurographics Association, 2019) Peters, Christoph; Merzbach, Sebastian; Hanika, Johannes; Dachsbacher, Carsten; Klein, Reinhard and Rushmeier, HollyIn a recent journal paper, we introduced a technique to represent reflectance spectra by an arbitrary number of Fourier coefficients. As a special case, we converted tristimulus data to three Fourier coefficients. After summarizing this work, we introduce the Fourier sRGB color space. It is defined in terms of Fourier coefficients but designed to behave similar to sRGB. Textures stored in Fourier sRGB support efficient spectral rendering but can be compressed with techniques designed for sRGB textures. Compression errors are similar to sRGB.Item Statistical Characterization of Surface Reflectance(The Eurographics Association, 2014) Havran, Vlastimil; Sbert, Mateu; Reinhard Klein and Holly RushmeierThe classification of surface reflectance functions as diffuse, specular, and glossy has been introduced by Heckbert more than two decades ago. Many rendering algorithms are dependent on such a classification, as different kinds of light transport will be handled by specialized methods, for example caustics require specular bounce or refraction. Due to the increasing wealth of surface reflectance models including those based on measured data, it has not been possible to keep such a characterization simple. Each surface reflectance model is mostly handled separately, or alternatively, the rendering algorithm restricts itself to the use of some subset of reflectance models. We suggest a characterization for arbitrary surface reflectance representation by standard statistical tools, namely normalized variance known as Squared-Coefficient-of-Variation (SCV).We show by videos that there is even a weak perceptual correspondence with the proposed reflectance characterization, when we use monochromatic surface reflectance and the images are normalized so they have the unit albedo.Item Towards a Practical Gamut of Appearance Acquisition(The Eurographics Association, 2013) Fuchs, M.; Koch, S.; Gieseke, L.; Mozer, F.; Eberhardt, B.; Reinhard Klein and Holly RushmeierWe propose discussing the performance of appearance modeling in terms of supported material and illumination gamut. While we have a precise understanding of the cost of any given appearance modeling method, performance is intrinsically hard to express without standardized material and illumination test scenarios. This lack of vocabulary hampers comparability between alternative approaches as well as the communication with community outsiders.Item Towards Physically Based Material Appearance in the Thermal Infrared Spectrum: A Short Survey(The Eurographics Association, 2018) Haraké, Laura; Burkard, Eva; Reinhard Klein and Holly RushmeierIn the context of photorealistic rendering, global illumination mainly relies on material models from the visible spectrum, whereas thermal infrared signatures receive only little attention. This paper outlines physical principles for determining the temperature distributions within a 3D scene and with it the overall radiance reaching an IR sensor. Hitherto existing approaches for physically based rendering are surveyed. Supposing that those methods still can benefit from recent rendering concepts in visible spectrum, we point out possible transfers.Item Weathering of Urban Scenes: Challenges and Possible Solutions(The Eurographics Association, 2016) Muñoz-Pandiella, I.; Bosch, C.; Mérillou, N.; Pueyo, X.; Mérillou, S; Patow, G.; Reinhard Klein and Holly RushmeierIn this paper, we propose to discuss on one of the main challenges in realistic rendering of urban scenes: changes in appearance over time within a urban context. After studying the previous work on weathering techniques, we have found that there is a lack of estimation for some important environmental parameters (such as sun radiation) that have a wrong impact on weathering phenomena simulation and, thus, on the appearance of virtual objects. We also think that such a problem needs to be addressed on large urban models. Here, we discuss some possible solutions we have studied in our research. These solutions are focused on screen-space techniques, in order to efficiently compute those factors and use them to interactively generate weathering effects.