Computer Graphics & Visual Computing (CGVC) 2017
Permanent URI for this collection
Browse
Browsing Computer Graphics & Visual Computing (CGVC) 2017 by Subject "Application packages"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 12DoF Interaction for Scientific Visualisation(The Eurographics Association, 2017) Turner, Martin J.; Morris, Tim; Sandoval, Mario; Tao Ruan Wan and Franck VidalThis short extended abstract investigates human-computer interactions in relation to a specific Six Degree of Freedom (6DoF) input device; described is the driver development and calibration required for a novel piece of hardware; and after initial user tests and a questionnaire of satisfaction, we consider areas for further research. This abstract concludes with a discussion of the design and use of dual-6DoF input devices and from feedback how new interaction modes will be exploited.Item gVirtualXRay: Virtual X-Ray Imaging Library on GPU(The Eurographics Association, 2017) Sujar, Aaron; Meuleman, Andreas; Villard, Pierre-Frederic; GarcĂa, Marcos; Vidal, Franck; Tao Ruan Wan and Franck VidalWe present an Open-source library called gVirtualXRay to simulate realistic X-ray images in realtime. It implements the attenuation law (also called Beer-Lambert) on GPU. It takes into account the polychromatism of the beam spectra as well as the finite size of X-ray tubes. The library is written in C++ using modern OpenGL. It is fully portable and works on most common desktop/laptop computers. It has been tested on MS Windows, Linux, and Mac OS X. It supports a wide range of windowing solutions, such as FLTK, GLUT, GLFW3, Qt4, and Qt5. The library also offers realistic visual rendering of anatomical structures, including bones, liver, diaphragm and lungs. The accuracy of the X-ray images produced by gVirtualXRay's implementation has been validated using Geant4, a well established state-of-the-art Monte Carlo simulation toolkit developed by CERN. gVirtualXRay can be used in a wide range of applications where fast and accurate X-ray simulations from polygon meshes are needed, e.g. medical simulators for training purposes, simulation of tomography data acquisition with patient motion to include artefacts in reconstructed CT images, and deformable registration. Our application example package includes real-time respiration and X-ray simulation, CT acquisition and reconstruction, and iso-surfacing of implicit functions using Marching Cubes.Item Human-in-the-Loop Visualisation Architecture for Monitoring Remote Compute(The Eurographics Association, 2017) Turner, Martin J.; Nagella, Srikanth; Fowler, Ron; Allan, Robert J.; Pasca, Edoarado; Yang, Erica; Tao Ruan Wan and Franck VidalThis paper describes the timeline of use cases of large and remote display VEs (Virtual Environments), hosted by STFC (Science and Technology Facilities Council), which were linked to HPC (High Performance Computing) systems. Considered is the development and use in the last few years of putting the human back into the HPC loop and clarifying the main types of interaction and collaboration that have been re-explored. It describes a set of specific common modes of use as well as stages of development, categorising and explaining how best practice may be achieved.