EuroVisSTAR2022
Permanent URI for this collection
Browse
Browsing EuroVisSTAR2022 by Subject "Human centered computing"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Chart Question Answering: State of the Art and Future Directions(The Eurographics Association and John Wiley & Sons Ltd., 2022) Hoque, Enamul; Kavehzadeh, Parsa; Masry, Ahmed; Bruckner, Stefan; Turkay, Cagatay; Vrotsou, KaterinaInformation visualizations such as bar charts and line charts are very common for analyzing data and discovering critical insights. Often people analyze charts to answer questions that they have in mind. Answering such questions can be challenging as they often require a significant amount of perceptual and cognitive effort. Chart Question Answering (CQA) systems typically take a chart and a natural language question as input and automatically generate the answer to facilitate visual data analysis. Over the last few years, there has been a growing body of literature on the task of CQA. In this survey, we systematically review the current state-of-the-art research focusing on the problem of chart question answering. We provide a taxonomy by identifying several important dimensions of the problem domain including possible inputs and outputs of the task and discuss the advantages and limitations of proposed solutions. We then summarize various evaluation techniques used in the surveyed papers. Finally, we outline the open challenges and future research opportunities related to chart question answering.Item A Survey of Visualization and Analysis in High-Resolution Connectomics(The Eurographics Association and John Wiley & Sons Ltd., 2022) Beyer, Johanna; Troidl, Jakob; Boorboor, Saeed; Hadwiger, Markus; Kaufman, Arie; Pfister, Hanspeter; Bruckner, Stefan; Turkay, Cagatay; Vrotsou, KaterinaThe field of connectomics aims to reconstruct the wiring diagram of neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the neuronal connectivity, however, relies on many individual steps, starting from high-resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state-of-the-art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open-source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.Item Trends & Opportunities in Visualization for Physiology: A Multiscale Overview(The Eurographics Association and John Wiley & Sons Ltd., 2022) Garrison, Laura A.; Kolesar, Ivan; Viola, Ivan; Hauser, Helwig; Bruckner, Stefan; Bruckner, Stefan; Turkay, Cagatay; Vrotsou, KaterinaCombining elements of biology, chemistry, physics, and medicine, the science of human physiology is complex and multifaceted. In this report, we offer a broad and multiscale perspective on key developments and challenges in visualization for physiology. Our literature search process combined standard methods with a state-of-the-art visual analysis search tool to identify surveys and representative individual approaches for physiology. Our resulting taxonomy sorts literature on two levels. The first level categorizes literature according to organizational complexity and ranges from molecule to organ. A second level identifies any of three high-level visualization tasks within a given work: exploration, analysis, and communication. The findings of this report may be used by visualization researchers to understand the overarching trends, challenges, and opportunities in visualization for physiology and to provide a foundation for discussion and future research directions in this area.Item Vessel Maps: A Survey of Map-Like Visualizations of the Cardiovascular System(The Eurographics Association and John Wiley & Sons Ltd., 2022) Eulzer, Pepe; Meuschke, Monique; Mistelbauer, Gabriel; Lawonn, Kai; Bruckner, Stefan; Turkay, Cagatay; Vrotsou, KaterinaMap-like visualizations of patient-specific cardiovascular structures have been applied in numerous medical application contexts. The term map-like alludes to the characteristics these depictions share with cartographic maps: they show the spatial relations of data attributes from a single perspective, they abstract the underlying data to increase legibility, and they facilitate tasks centered around overview, navigation, and comparison. A vast landscape of techniques exists to derive such maps from heterogeneous data spaces. Yet, they all target similar purposes within disease diagnostics, treatment, or research and they face coinciding challenges in mapping the spatial component of a treelike structure to a legible layout. In this report, we present a framing to unify these approaches. On the one hand, we provide a classification of the existing literature according to the data spaces such maps can be derived from. On the other hand, we view the approaches in light of the manifold requirements medical practitioners and researchers have in their efforts to combat the ever-growing burden of cardiovascular disease. Based on these two perspectives, we offer recommendations for the design of map-like visualizations of the cardiovascular system.